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ABSTRACT 
 

Thunderstorm forecasting over Africa has presented significant difficulty. The 

Gálvez-Davison Index (GDI) was developed for the Americas and provides a more 

accurate convective forecasting index than the conventional indices for thunderstorm 

forecasting.. Previous research using the GDI via the Global Forecasting System (GFS) 

model data over Africa showed promising results for areal coverage (Donndelinger 

2018), especially during the spring through fall months. This study will look to test the 

GDI via the Global Air Land Weather Exploitation Model (GALWEM) to determine if 

the GALWEM GDI forecast is able to more accurately forecast the location and areal 

coverage, as well as resolve airmass thunderstorms, when compared to the GALWEM K 

Index (KI) and GFS GDI forecast.  

Results from this study show the GDI and KI have similar location error at the 

95% confidence level across the monthly, Zulu time, convective regime, and regional 

studies. GDI consistently outperforms the KI in terms of areal convection coverage in 

every study analyzed at the 95% confidence level. The GDI proves to perform best when 

convection is primarily airmass-based, while the KI performs best when convection is 

primarily from Mesoscale Convective Systems (MCSs). Furthermore, Kelvin waves and 

outgoing longwave radiation (OLR) show promise as additional convective forecast tools 

for Africa. This study contains important information for furthering meteorological 

understanding of convection and precipitation over the African continent.  
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 1 

A NEW ANALYSIS OF THE GALWEM GÁLVEZ-DAVISON INDEX FOR 
CONVECTIVE FORECASTS IN NORTHERN AFRICA 

 

1.  Introduction 

General Issue 

Forecasting convective activity in Africa is a daunting task due to several limiting factors. 

The continent of Africa has a lack of quality data coverage and the increased focus and activity 

in the region creates significant challenges for weather forecasting and planning. The research 

here focuses on convective forecasting over the African continent. Thunderstorm location 

forecasting is of particular importance, as lightning strikes present significant aviation and 

operational risk management concerns. Location accuracy of convective indices is one of the 

main focal points of this study.  

Convective indices are one important tool used to aid thunderstorm forecasting globally. 

These indices assess parameters from real-time or atmospheric soundings of the vertical 

atmosphere to provide meteorologists an idea of the probability for convective storms. 

Parameters include moisture, temperature and dewpoint temperature to determine instability in a 

certain region. Some of these convective indices include: Lifted Index (LI), Showalter Stability 

Index (SSI), and the Total Totals Index. The K Index (KI), in particular, has been regarded as a 

quality index for the tropical regions (Gálvez and Davison 2016). In North America, the LI, SSI 

and TTI are generally accepted as the standard for convective forecasting, but no one index has 

been accepted as a standout for Africa. However, positive results have been achieved when the 

GDI is recreated and analyzed over Africa (Donndelinger 2018). The findings of Donndelinger 

(2018) will be discussed more in Chapter IV.  
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Figure 1.1. The region of interest: The African continent bounded by 25°S-25°N and 20°W-

55°E.  
 

The area of interest for this research is the majority of the continent of Africa, specifically 

from 25°S-25°N and 20°W-55°E (Figure 1.1). This area is chosen because the GDI is designed 

for the tropics.   

NOAA researchers, Jose Gálvez and Michel Davison, developed a new convective index 

tailored for the Caribbean and Central America (Gálvez and Davison 2016). Validation studies 

have been conducted and variations have been made to tailor the Gálvez and Davison Index 

(GDI) for Costa Rica, South America, and in climatologically different areas such as South 

Korea (Omar Nava, written communication, July 13, 2017). The purpose of this research is to 

expand upon previous studies by Gálvez and Davison (2016) and Donndelinger (2018) in order 

to analyze and compare the forecasting skill of the GDI and KI over Africa using the Global Air 

Land Weather Exploitation Model (GALWEM). 
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Problem Statement 

Forecasting techniques for convective activity in Africa are currently based on indices 

created with meteorological understanding and weather data from other parts of the world. While 

Donndelinger (2018) showed promising results analyzing the GDI via GFS 1° horizontal 

resolution reanalysis data, the horizontal resolution of this GFS data is fairly coarse and this 

presents an issue for airmass thunderstorms. The Air Force’s GALWEM has yet to be tested 

using the GDI over Africa, making it the next step for this research study as it is the Air Force’s 

forecasting model of choice.   

 

Hypothesis 

The GALWEM GDI will more accurately predict convective storms over Africa than the 

KI. The GALWEM has a horizontal resolution of 17 km, whereas the GFS reanalysis data used 

in the previous study has a horizontal resolution of 1° longitude by 1° latitude, or approximately 

111 km by 111 km. The much higher resolution of the GALWEM data should help resolve 

airmass thunderstorms and more accurately identify areas of likely convection. Any adjustments 

to the index should consider differences between the models, as well as climate differences 

between Central America, the Caribbean, and different regions in Africa.  
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Research Objectives, Focus Questions 

The research objectives are as follows:  

1. Replicate both the GDI and KI algorithms in Matlab using the GALWEM data, and 

plot the index over the African region of interest, providing a similar display to the 

NOAA website (https://www.wpc.ncep.noaa.gov/international/gdi/) 

2. Plot each base parameter used to calculate the GDI with GALWEM data against GFS 

analysis data counterpart in order to see if there are any significant model biases 

present  

3. Ensure lightning data and strike placement is realistic and lines up with cold cloud top 

coverage via satellite imagery 

4. Assess the skill of both indices by comparing forecasts with lightning data and 

satellite imagery, statistically analyzing its skill in predicting convection over Africa  

5. Test GDI-Africa (GDI-As) developed by Donndelinger (2018) and modify the GDI to 

further develop or create new GDI-As, considering differences between the target 

regions: the Caribbean and Africa; adjust the parameters within GDI and/or add new 

terms to modify and tailor the new GDI-A  

6. Assess the skill of the GDI-As for Africa by comparing forecasts with lightning data 

and satellite imagery, statistically analyzing its skill in predicting convection over 

Northern Africa 

7. Split the GDI and GDI-As into West and East and statistically analyze the forecasting 

accuracy of these two regions when compared to lightning data and satellite imagery, 

in order to determine if there is a regional correlation to GDI forecast accuracy  

 

https://www.wpc.ncep.noaa.gov/international/gdi/
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Research questions for investigation: 

1. How well does the GALWEM GDI predict convection over Africa for both spatial 

coverage and location of storms?  

2. Does the GALWEM data, and subsequently GDI, help resolve airmass 

thunderstorms? (This was a weakness of the GFS 1° longitude by 1° latitude 

reanalysis data)  

3. Does the GALWEM GDI need improvement for forecasting over Africa, and if so, 

how? Do the GDI-As developed by Donndelinger (2018) improve forecast accuracy 

for Africa when used with the GALWEM? What additional parameters, if any, need 

to be considered for the GDI-As? 

4. Is there a particular region where the GDI does not perform well? For example, 

because GDI was developed for the tropics, does the index lack accuracy in one part 

of the continent over another? Furthermore, does it perform poorly in dry regions 

such as the Sahara/Sahel and Saudi Arabia? 

5. How well does the new GDI-A work over Africa, spatially and intensity wise? Why 

does it work better than GDI in this region?  

6. Does the new GDI-A improve confidence when forecasting convection over Africa?  

 

Assumptions/Limitations 

In this study, two sets of model data are used: the GFS analysis data and the GALWEM 

zero hour (00 HR) forecast data. While the GFS analysis model data is not perfectly 

representative of the true atmospheric conditions, it is some of the best data available and is 

accepted as close to observed. Increased emphasis is placed on the low-levels with several more 
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layers represented in the upper levels. The horizontal resolution of the GFS data is 1° latitude by 

1° longitude, where 1° is approximately 111 km or 69 miles (UCAR 2017). Convection 

processes occur at smaller scales than the vertical and horizontal resolutions of the GFS model 

data, as further explained in Chapter II. Vertically, GFS model data points are set at the surface, 

1000 millibars (mb), 975 mb, 950 mb, 925 mb, and 900 mb, and then every 50 mb above that 

until 100 mb (UCAR 2017).  

In Donndelinger (2018), the GFS model data is mapped onto a 1° by 1° grid, with each 

point assessed to see if the forecast correctly identified the probability for lightning to occur. As 

discussed by Donndelinger (2018), this is an issue for two reasons: lightning rarely strikes at 

whole degree latitude and longitude degree values, and interpretation of GFS GDI forecast index 

values for various levels of convective potential is subjective. Based on these two issues, the 

selected method of statistical analysis is clustering, rather than point-by-point analysis. 

Furthermore, although the GALWEM data (17 km) has a much higher resolution than the GFS 

analysis data (~111 km), it is still not high enough of a resolution to consider point-by-point 

analysis. For this reason, and in order to keep methods consistent and allow objective 

comparisons between the results of this study and Donndelinger (2018), clustering will also be 

used for the statistical analysis here. Lastly, it should be noted that the GALWEM has an 

effective horizontal resolution of 17 km. The reference latitude for the model is 48.186°N/S with 

increasing effective horizontal resolution toward the north of this reference latitude and 

decreasing effective horizontal resolution to its south (GALWEM 2016). For example, the 

effective 17 km GALWEM horizontal resolution at 15°N (well within the study region) is 

~24.6km, which has implications for the phenomena the model can resolve. For the sake of this 

document, the GALWEM resolution will be referred to as 17 km for the all successive mentions.  
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Implications  

While the previous study showed some positive results, there is still work to be done in 

terms of improving forecast location of convective activity in Africa. Increase in forecast 

confidence over the region with the use of the higher-resolution GALWEM model could aid 

forecasting ability in terms of predicting the extent, timing and intensity of convection. Increased 

environmental situational awareness could contribute to a better understanding of weather 

patterns and storm formation in Africa and ultimately help further knowledge of the role in the 

Earth’s climate system, as well as other human-based systems including transportation, irrigation 

and agriculture.   

 

Preview 

This thesis is organized in the following fashion: Chapter II discusses sources of 

formation and types of African thunderstorms along with an overview of past research conducted 

in tropical convection, Chapter III details the background on data and methodology used in this 

research, Chapter IV lays out analysis and results, and Chapter V discusses the research results, 

the impacts and usefulness of the GDI and GDI-A for convective forecasting over Africa, as well 

as a conclusion of the research with recommendations for future work in this specific topic.  
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II. Background and Literature Review 

 

Chapter Overview 

The purpose of this chapter is to describe the basis of current research and background of 

convection patterns over Africa. An understanding of this information is crucial to the full 

understanding of research findings and conclusions at the end of this document.  

 

African Thunderstorms 

The majority of literature on convective activity has focused on mid-latitude storms. This 

is primarily based on the higher population density and subsequent resource allocation. In order 

to bolster knowledge of global weather patterns and climatology, as well as ease growing 

transportation, agriculture, and economic stresses, it is vital to gain a better understanding of 

tropical convection.  

Tropical convection and mid-latitude convection vary in many ways. In the tropics, latent 

heat release initiates and sustains convection, whereas in the mid-latitudes, available potential 

energy from strong temperature gradients drives convective activity (Holton and Hakim 2013). 

In the tropics, most latent heat release is tied to convective systems. Therefore, storm activity 

upstream is an indicator of increased convective potential in these regions (Gálvez and Davison 

2016). Mid-latitude convection is primarily caused by fronts, boundaries between airmasses, 

resulting from strong temperature gradients, while large-scale circulations and latent heat release 

produce convection in the tropics. Large-scale patterns that drive tropical circulation include the 

Hadley cell and the Walker Circulation (North Carolina Climate Office 2019).  
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Differential heating of Earth’s surface causes the large-scale circulations observed in our 

atmosphere. The dominant circulation in the tropics is the Hadley cell; a region where the 

easterly trade winds in both hemispheres converge near the equator, causing rising air motion 

(Holton and Hakim 2013). The Hadley cell is responsible for the majority of heat transfer from 

the equator poleward. As air converges and is pushed vertically above the surface into the 

atmosphere, pseudoadiabatic ascent and formation of cumulus and cumulonimbus clouds 

provides heat transport from the surface to aloft (Holton and Hakim 2013). These clouds form a 

band of discontinuous, deep convection along the meteorological equator circling the globe 

called the Intertropical Convergence Zone or ITCZ (Galvin 2016). The exact location of the 

ITCZ moves north and south depending upon the most direct solar radiation on Earth’s surface. 

The trade wind flow aids moisture advection, providing latent heat, and energizing this large-

scale, sustained convection in the ITCZ (Holton and Hakim 2013).  

The movement of tropical waves is another prominent feature that is associated with 

convection in the tropics. Within the ITCZ, weak disturbances form and propagate westward, 

often propelled by the latent heat release from convective precipitation (Holton and Hakim 

2013). Within large, convective clouds, upper-level divergence occurs and by mass continuity, 

low-level convergence also occurs. When this occurs, tropical waves are formed. While it is not 

easy to detect tropical waves, they can be identified by perturbations in the easterly trade winds, 

via satellite, or by the changes in 24-hour surface pressure (Kirshnamurti et al. 2013). 

Convection in Africa is exhibited in three main ways including: African easterly waves 

(AEWs), airmass thunderstorms, and Mesoscale Convective Systems (MCSs). Across the 

African continent, unique processes result in a specific type of waves called African wave 

disturbances or African easterly waves (AEWs). An apparent feature of the Northern 
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Hemisphere summer is the strong positive temperature gradient induced between the equator and 

25°N due to intense surface heating in the Sahara Desert (Holton and Hakim 2013). This strong 

temperature gradient causes a low level easterly jet to form around 13-16°N with a jet core at 

about 650 mb, known as the African Easterly Jet (AEJ) (Holton and Hakim 2013). Monsoonal 

flow and the lower Walker circulation induce westerly flow at about 10°N with a core around 

950 mb. These features combine to create a cyclonic shear zone that promotes initiation and 

propagation of synoptic-scale tropical waves (Holton and Hakim 2013). These AEWs are more 

dependent on the barotropic and baroclinic energy conversion from the AEJ as opposed to latent 

heat release, making them a special category of tropical waves (Holton and Hakim 2013). At 650 

mb, stronger winds are observed aloft, indicating the location of the AEJ (Figure 2.1).  

 
Figure 2.1: The high winds at 650 mb in the AEJ are highlighted by the blue arrow 

(Donndelinger 2018).  
 

AEWs have some distinct characteristics. These waves can range from 1500-4500 km, 

averaging 2500 km in length from north to south (Kirshnamurti et al. 2013). With a time scale on 

the order of 3-5 days, these waves travel at around 8 meters per second or approximately 5-7° 

longitude per day. AEWs originate somewhere between 15-30°E and reach a maximum 

amplitude somewhere between 10°E and -20°W over West Africa or the coast. Ahead of the 

waves are northeasterly winds, low-level convergence, and rising air. As this region is an 
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easterly shear environment, convection associated with AEWs is found on the west side of the 

wave axis. AEWs can generate convection, but the aforementioned process is the least prominent 

manner in which convection is produced.  

Convection is often in the form of airmass thunderstorms, which are observed in the 

tropics and mid-latitudes alike. Airmass thunderstorms are caused from uneven heating of the 

Earth’s surface. If the convective temperature is reached or surpassed, air rises and forms 

columns of air that do not need any mechanical forcing to create rising motion (Donndelinger 

2018). Small, localized thunderstorms can result if enough instability is present. These storms 

range in size from about 24 km to about 1° of latitude in diameter, or about 111 km, near the 

equator. Most of these observed systems are smaller than 1° by 1°, which is why the higher-

resolution, 17 km GALWEM data was selected (Figure 2.2).  

 
Figure 2.2: Airmass thunderstorms across Africa shown on IR satellite imagery from 12 Sep 

2018 at 12Z (NexSat 2011). 
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Figure 2.3: MCSs are highlighted inside the large yellow rectangle on IR satellite imagery from 

14 May 2018 at 06Z. 
 

Mesoscale Convective Systems (MCSs) are another source of convective activity over 

Africa. MCSs are large, usually circular, convective storms that encompass much broader areas 

than independent thunderstorms. These storm systems are defined by cloud-top temperatures of  

-52°C or colder that cover a minimum area of 30,000 km2 (Jirak et al. 2003). MCSs have strong 

vertical velocities, high amounts of precipitation, and broad areas of cold cloud tops (Figure 2.3) 

(Kirshnamurti et al. 2013). Prime MCS initiation conditions exist over northern Africa with the 

tropical easterly jet (TEJ) at around 7°N and 175 mb, and the AEJ at around 13-16°N and 650 

mb (Figure 2.4). The anticyclonic shear side (northern most portion) of the TEJ in the upper 

levels overlays the cyclonic shear side of the AEJ in the mid-levels (southern-most portion), 

inducing convergence in the low levels and divergence aloft. This environmental setup is 

conducive for the development and maintenance of convection.  
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Figure 2.4: The locations of the prominent wind features, the African Easterly Jet (AEJ) at 

approximately 650 mb, and the tropical easterly jet (TEJ) at approximately 175 mb 
(Donndelinger 2018).  

 

Almost all squall line systems in West Africa have been observed in this ideal convective-

formation environment between the TEJ and AEJ. 

Another contributing factor to thunderstorm formation in Africa is the southwesterly 

monsoonal flow, which pushes onshore over northwestern Africa. This warm, moist air is capped 

off by the dry, easterly mid-level flow, providing a shearing environment and ideal conditions for 

storm formation (Kirshnamurti et al. 2013). Typically, small-scale convective systems will 

dissipate once excess surface heating is no longer present. However, MCSs can form and 

enhance during the night due to cooling cloud tops that promote vertical development in the 

atmosphere (Donndelinger 2018).  

Another phenomena that modulates convection over the Africa continent is that of Kelvin 

waves. There are two types of Kelvin waves: coastal and equatorial. Coastal Kelvin waves 

propagate with the shoreline on the right in the Northern Hemisphere and on the left in the 
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Southern Hemisphere (Krauss 2019). These waves balance the Coriolis force against a 

topographic boundary. When the wave moves poleward along the coast, the Coriolis force 

pushes it to the right (left) in the Northern (Southern) Hemisphere and this causes water to pile 

up along the coast. Excess water on the coast creates a pressure gradient directed offshore and a 

geostrophic current direct northward. Equatorial Kelvin waves are a special type of Kelvin wave 

that balances the Northern Hemisphere Coriolis force against the Southern Hemisphere Coriolis 

force (Krauss 2019). These waves propagate eastward and only along the equator. Studies have 

shown that Kelvin waves are able to regulate precipitation and convective activity over Africa, 

primarily near the equator and in conjunction with the West African Monsoon (Krauss 2019; 

Mekonne et al. 2008; Mounier et al. 2006). This information will be discussed further in Chapter 

IV via the regional and Kelvin wave studies.  

 

Relevant Research 

The K Index (KI) 

The KI is often regarded as a quality convective index for forecasting in the tropics 

because it was developed to pinpoint airmass thunderstorms rather than convection resulting 

from frontal systems or orographic lift (George 1960). This index was created to forecast 

thunderstorms over the North Central plains and validated over North America. One major 

difference between the KI and other common indices is the consideration of the 700 mb moisture 

within KI. Computation of the KI is carried out via Equation 2.1 below. 

𝐾𝐾𝐾𝐾 = (850 𝑚𝑚𝑚𝑚 𝑇𝑇 − 500 𝑚𝑚𝑚𝑚 𝑇𝑇) + (850 𝑚𝑚𝑚𝑚 𝑇𝑇𝑑𝑑)− (700 𝑚𝑚𝑚𝑚 𝑇𝑇− 700 𝑚𝑚𝑚𝑚 𝑇𝑇𝑑𝑑)               (2.1) 

In Equation 2.1, T is the air temperature and 𝑇𝑇𝑑𝑑  is the dewpoint temperature. K is unique in its 

inclusion of the 700 mb dewpoint depression, which is closely linked to buoyancy and dry air 
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entrainment in the tropical mid-troposphere (Gálvez and Davison 2016). The values of the KI are 

then categorized by frequency estimates shown in Table 2.1. Since KI is strictly used to forecast 

airmass thunderstorms, any low-level (below 700 mb) convergence or divergence will affect the 

frequency of thunderstorms (George 1960). While convergence and divergence are not included 

in KI calculation, these processes must be considered by the forecaster (George 1960).  

Table 2.1: K values and their respective thunderstorm frequency estimates (George 1960). 

 
 

Although it has its strengths for forecasting airmass thunderstorms, the KI includes some 

weaknesses in regards to tropical environments such as low variability in shallow convective 

regions, as well as a disregard of thermodynamic properties below 850 mb (Gálvez and Davison 

2016). K does not take into account stability contributions below 850 mb, which are key for 

tropical convection. The GDI has focused on these weaknesses in the KI because it was 

developed for tropical convection, specifically over Central America and the Caribbean, where 

low-level processes are the primary contributors of convective development. Some other 

common convective indices and their corresponding characteristics are included in Table 2.2 for 

reference. Each index considers multiple parameters at various levels in the atmosphere as a 

quick look at convective potential.  
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Table 2.2: Gálvez and Davison’s assessment of common convective indices (Gálvez and 
Davison 2016). 

 
 

The Gálvez-Davison Index (GDI) 

The Gálvez-Davison Index (GDI) is a new index developed for tropical convection that 

works to fill the gaps of knowledge left by common convective indices lack of skill and accuracy 

in the tropics (Gálvez and Davison 2016). The GDI is comprised of four main sub-indices: 

equivalent potential proxies core index (ECI), mid-level warming index (MWI), inversion index 

(II), and surface pressure correction for elevation (Co). The GDI considers additions from three 

separate atmospheric layers when calculating these sub-indices (Figure 2.5).  
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Figure 2.5: Model depiction of the layers used in the GDI algorithm to forecast convective 

potential (Gálvez and Davison 2016). 
 

Equivalent Potential Temperature Proxies Core Index (ECI) 

Equivalent potential temperature (EPT) is a meteorological quantity that accounts for 

both temperature and moisture in the atmosphere (Gálvez and Davison 2016). EPT can indicate 

the column moisture and potential release of latent heat. As mentioned previously, release of 

latent heat is the main cause of convection in the tropics. Higher EPT values are favorable for 

convection, and slow decrease with height is favorable for deep convection. The 950 mb height 

is chosen to be the center of layer A in order to capture the characteristics of the boundary layer; 

925 mb proved to be too high at times. Technically, the air temperature at the lifted condensation 

level (LCL) should be used to calculate the EPT but to simplify the calculations of EPT, air 

temperatures at 850 mb were chosen instead of LCL temperature. Only minor differences in GDI 

values were noted when using this substitution.  

Two important factors to consider when forecasting tropical convection are moisture and 

trade wind inversions (TWI). In the tropics, moisture is mainly a product of foregoing convection 

(Gálvez and Davison 2016). A feedback mechanism of moisture and convection indicates that 
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foregoing convection in upstream locations could be used as a predictor for tropical convection. 

TWI is another important meteorological factor to consider when forecasting convection in the 

tropics. This feature is identified by a minor decrease in lapse rate or, sometimes, a small 

increase in temperature with height. The cause of the TWI is descending air in the Hadley cell. 

The development of convection depends on the strength and height of these inversions. With a 

stronger and lower inversion, vertical development is inhibited, while some growth can occur 

with weaker and higher inversions. Regions with both ample moisture and limited inhibiting 

inversion are ideal for convective development. Calculating the EPTs within the GDI formula 

incorporates the warm, moist column as well as the TWI signatures.  

In order to calculate the equivalent potential temperature proxy (EPTP) term for the GDI, 

the EPTPs from all three layers, A, B, and C are incorporated.  

𝜃𝜃𝐴𝐴 =  𝜃𝜃950 =  𝑇𝑇950 �
1000
950

�
2/7

         (2.2) 

𝜃𝜃𝐵𝐵 =  0.5(𝜃𝜃850 + 𝜃𝜃700 ) =  0.5[𝑇𝑇850 �
1000
850

�
2
7 + 𝑇𝑇700 �

1000
700

�
2
7]    (2.3)  

𝜃𝜃𝐶𝐶 =  𝜃𝜃500 =  𝑇𝑇500 �
1000
500

�
2/7

         (2.4) 

Final EPTP values are calculated using the EPTPs above in the following manner:  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴 =  𝜃𝜃𝐴𝐴 𝑒𝑒
� 𝐿𝐿𝑜𝑜  𝑟𝑟950
𝑐𝑐𝑝𝑝𝑝𝑝𝑇𝑇850

�
         (2.5) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵 =  𝜃𝜃𝐵𝐵  𝑒𝑒
�𝐿𝐿𝑜𝑜  (0.5(𝑟𝑟850+𝑟𝑟700 ))
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+ ∝        (2.6) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶 =  𝜃𝜃𝐶𝐶  𝑒𝑒
� 𝐿𝐿𝑜𝑜 𝑟𝑟500
𝑐𝑐𝑝𝑝𝑝𝑝𝑇𝑇850

�
+ ∝          (2.7)  
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In the equations above, the ‘r’ represents the mixing ratio at the specified levels, the empirical 

adjustment constant ∝ = −10[𝐾𝐾], the latent heat constant 𝐿𝐿𝑜𝑜 = 2.69𝐸𝐸6 𝐽𝐽
𝑘𝑘𝑘𝑘

 , and the specific heat 

of dry air at constant pressure 𝑐𝑐𝑝𝑝𝑝𝑝 = 1005.7 𝐽𝐽
𝑘𝑘𝑔𝑔  𝐾𝐾

 .  

Finally, the ECI is calculated using mid-level EPTP (ME) and low-level EPTP (LE) 

factors.  

𝑀𝑀𝑀𝑀 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶 − 𝛽𝛽           (2.8)  

𝐿𝐿𝐿𝐿 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴 − 𝛽𝛽            (2.9) 

In the equations above, 𝛽𝛽 = 303[𝐾𝐾] and it is an empirical constant. The final ECI is calculated 

using Equation 2.10 below.  

𝐸𝐸𝐸𝐸𝐸𝐸 =  �𝛾𝛾 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴 − 𝛽𝛽) ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶 − 𝛽𝛽), 𝐿𝐿𝐿𝐿 > 0
                                                          0,𝐿𝐿𝐿𝐿 ≤ 0        (2.10) 

In equation 2.10, 𝛾𝛾 = 6.5 ∗ 10−2[𝐾𝐾−1] and is an empirical scaling constant. Equation 2.10 shows 

that the convective potential increases based on the EPTPA and EPTPC difference from the 𝛽𝛽 

empirical constant. The GDI determines the amount of moisture and heat in the low-levels and 

aloft. If both levels have significant amounts of both moisture and heat, the column will be 

primed for convective activity.  

Mid-Level Warming Index (MWI)  

The MWI sub index quantifies stability changes in the mid-levels based on temperatures 

at 500 mb. The MWI stability is related to warm ridges (stable) and cool troughs (unstable) in the 

mid-levels. This index is an inhibition factor, meaning it only produces negative values or is set 

to zero. The MWI relies on the 500 mb air temperature departure from 𝜏𝜏 = 263.15[𝐾𝐾](~−

10°C). If the 500 mb temperature is warmer than 𝜏𝜏, the MWI has a negative value and this 
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reduces the magnitude of the GDI. If the 500 mb temperature is cooler than 𝜏𝜏, the MWI is set to 

zero and does not affect the GDI (Equation 2.11). 

𝑀𝑀𝑀𝑀𝑀𝑀 =  �𝜇𝜇 ∗
(𝑇𝑇500 − 𝜏𝜏),𝑇𝑇500 − 𝜏𝜏 > 0

                        0,𝑇𝑇500 − 𝜏𝜏 ≤ 0          (2.11) 

In equation 2.11 above, 𝜇𝜇 =  −7[𝐾𝐾−1] is an empirical constant established that sets MWI to a 

negative value and controls the relative weight of the MWI on the GDI formula. Warmer 500 mb 

temperatures will lower the GDI values, decreasing convective potential.  

Inversion Index (II) 

The inversion index is another inhibiting sub index of the GDI. The II considers stability 

across the inversion and dry air entrainment once convective cells penetrate the inversion. Both 

of these processes inhibit trade wind convection. The II is made up of two dimensionless factors, 

a stability factor S and a drying factor D, where S and D are as follows: 

𝑆𝑆 =  𝜎𝜎 ∗ (𝑇𝑇950 − 𝑇𝑇700)         (2.12) 

𝐷𝐷 =  𝜎𝜎 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵 − 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴)          (2.13) 

In equations 2.12 and 2.13 above, 𝜎𝜎 = 1.5[𝐾𝐾−1] is an empirical scaling constant determined ad 

hoc in order to control the weight of TWI effects on the GDI. The stability factor shows that the 

smaller the difference, the stronger the stability of the layer due to an increase in negative 

buoyancy. A large difference indicates an unstable 950-700 mb layer. The more negative D 

becomes, the more dry air entrainment is occurring, and therefore inhibition of the convective 

development. Below, positive values of II are set to zero, to ensure II is an inhibiting factor: 

𝐼𝐼𝐼𝐼 =  �                     0,𝑆𝑆 + 𝐷𝐷 > 0
 𝜎𝜎 ∗ (𝑆𝑆 + 𝐷𝐷), 𝑆𝑆 + 𝐷𝐷 ≤ 0           (2.14) 
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Correction for Elevation (Co) 

The GDI was developed for use in regions with a surface pressure located below 950 mb. 

However, in high elevation areas, 950 mb is actually below the surface. For this reason, a terrain 

correction factor is needed to adjust for unrealistically high GDI values over high terrain into 

more realistic numbers. The CO is calculated as follows:  

𝐶𝐶𝐶𝐶 = 18 − 9000
𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆−500

 ,              (2.15) 

In Equation 2.15, 18, 9000,𝑎𝑎𝑎𝑎𝑎𝑎 500 are all empirical constants in hectopascals (hPa). Gálvez 

and Davison (2016) found that this correction factor was necessary over the Mexican highlands.  

In order to calculate the GDI, the sub-indices are added together to indicate various 

convective potential, where higher numbers indicate greater potential (Figure 2.6).  

GDI = ECI + MWI + II + Co   (2.16) 

 
Figure 2.6: GDI values and their corresponding convective potential (Gálvez and Davison 2016). 

 

Gálvez and Davison (2016) concluded that the GDI outperformed the TTI, LI, KI, and 

the Convective Available Potential Energy (CAPE) for the study region of Central America and 
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the Caribbean. Their study analyzed GDI values compared to brightness temperatures shown in 

the GOESIR4 satellite imagery. They used a determination coefficient of 𝑟𝑟2  to assess 

performance of GDI relative to LI, TTI, KI, and CAPE via GFS data. Data were compared at two 

different horizontal resolutions: 1° and 2°. Their results indicate that GDI outperforms most 

stability indices in its depiction of convection in the tropics. GDI performed best in the 15°N - 

25°N belt of the study region, with high correlation of brightness temperatures noted in the Gulf 

of Honduras/Yucatan Peninsula and in central Mexico (Gálvez and Davison 2016). Results are 

encouraging in Mexico, where much of the terrain lies above 950 mb and a large urban 

population is present in Mexico City and the surrounding region.  

Donndelinger (2018) also showed positive results for use of the GDI over Africa. In the 

previous study, Donndelinger (2018) recreated the GDI algorithm and compared its accuracy 

against the National Oceanic and Atmospheric Association (NOAA) GDI forecasts using GFS 

model reanalysis data at a resolution of 1° by 1°. Then, the KI is recreated and both the GDI and 

KI are compared to satellite data to ensure a reasonable depiction of these indices is being 

plotted. Donndelinger (2018) used K means clustering to group detected lightning strikes 

archived by the 14th Weather Squadron. The lightning clusters were examined and GDI, along 

with KI, values greater than 35 and 30 respectively were selected to indicate high potential for 

convective activity. The same number of clusters is chosen for GDI and KI as the clusters 

indicated by the k-means plot for lightning in order to keep consistency. Lightning and GDI/KI 

clusters were compared visually and paired by geographic proximity to one another. Then, 

average areal coverage and location values were calculated. Location error is determined by 

taking the difference between the observed (lightning cluster) and forecasted (GDI/KI cluster) 

centroids for the lightning. Average area error is determined by calculating the average 
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difference between a centroid and each of the data points within that cluster and taking the 

difference of paired clusters’ average point-to-centroid distances.  

Donndelinger (2018) found that GDI and KI consistently had similar location error 

values, while the GDI proved to have significantly lower area error values than KI in almost all 

cases. An exception occurred when convection was primarily airmass thunderstorms in the intra-

seasonal sub study. Donndelinger (2018) also noted that location error values from both indices 

were lowest in the summer and highest in the winter. The opposite was found of the GDI area 

error, which had highest error values in the summer and lowest in the winter. GDI consistently 

depicts the spatial coverage of convection more accurately than KI with the most drastic 

difference in error noted in the winter and least in the spring (Donndelinger 2018).   

Donndelinger (2018) also modified the GDI by adding multiple parameters as a fifth sub 

index, in order to determine if the GDI could be adjusted to more accurately portray convection 

over Africa. Positive results for area error were indicated by the addition of relative humidity 

(RH) at 300 mb. This is possibly due to ice crystals or the presence of upper level divergence. 

Donndelinger (2018) explains that a higher resolution model could likely provide even stronger 

positive forecast accuracy results, as the 1° by 1° GFS reanalysis data is unable to resolve 

airmass thunderstorms.  
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III. Methodology 

Chapter Overview  

The purpose of this chapter is to describe the data used in this study, the setup and 

verification of the GALWEM GDI plots, as well as the methodology for analyzing the 

differences between the GDI and KI forecast for convection over the African region of interest. 

Both the GALWEM 00 HR forecast and GFS 00 HR analysis data, along with lightning data that 

will be used as truth for verification, were used for this study.  

 

NCEP GFS Analysis Data, GALWEM Data, and GDI Calculation 

Similarly to Donndelinger (2018), the GFS analysis data was used to plot the GDI and 

confirm its accuracy with the National Oceanic and Atmospheric Association (NOAA) GDI 

forecasts. GFS analysis data provide a “snapshot” in time of the current conditions (Peng 2014). 

The National Center for Environmental Prediction (NCEP) GFS model analysis was downloaded 

from the University Corporation for Atmospheric Research (UCAR) Research Data Archive 

(RDA) (UCAR 2014).  

Analysis data uses a variety of observations on an irregular grid in order to produce a 

representation of the atmospheric state over a regular grid (Peng 2014). Creators of these 

analyses use a complex toolset including: statistical measures of the variability of the atmosphere 

itself, physical models of atmospheric behavior such as geostrophic balance, and mathematical 

physics models.  

In order to remain consistent with the setup of Donndelinger (2018), the GRIB2 GFS 

analysis data with 1° by 1° horizontal resolution was used (UCAR 2017). The data contains 

various parameters at pressure levels ranging between 1000 mb up to 10 mb. In order to calculate 



 25 

the GDI, the temperature and relative humidity at 950 mb, 850 mb, 700 mb, and 500 mb are 

required. These parameters were extracted from the GRIB2 files via Matlab for the desired 

latitude/longitude range of 25°S - 25°N latitude and 20°W - 55°E longitude.   

Similarly, the GALWEM data is also in GRIB2 format. However, the GALWEM data 

used in this study has a horizontal resolution of 17 km. This was the highest resolution 

GALWEM data available at this time for distribution and was chosen in an attempt to help 

resolve airmass thunderstorms, a weakness of the previous study. The GALWEM data is 

processed at the 16th Weather Squadron at Offutt AFB, NE. Since model data was only stored up 

to 10 days prior, this study only analyzes dates from late April-September of 2018, and is unable 

to exactly match the dates and times used by Donndelinger (2018). While this could be an area of 

further research, it was not seen as a limiting factor to the study due to the aforementioned results 

in Donndelinger (2018), which indicate that location error was lowest in the summer months for 

the GDI. Although the opposite was true of seasonal areal coverage, it was determined that the 

GDI outperformed the KI in terms of areal coverage with negligible location error differences 

(Donndelinger 2018). The GALWEM data also includes numerous atmospheric parameters 

across many atmospheric levels ranging from the surface pressure to 100 mb. However, the only 

variables needed to calculate the GDI are the temperature and relative humidity data at 950, 850, 

700, and 500 mb.  

In order to calculate the GDI in Mathematics Laboratory (Matlab), the required 

parameters were loaded across the specified latitude and longitude range, the empirical constants 

were defined, and the algorithm was setup to calculate one time file per run. Once the applicable 

variables were ingested, Equations 2.2-2.16 were utilized to build the resulting index. The NCEP 

and GALWEM GRIB2 files did not contain mixing ratio at each isobaric level, so relative 
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humidity values at each specified level were acquired in order to calculate them. To calculate 

mixing ratio, the dew point temperature had to be calculated first using the relative humidity 

(𝑅𝑅𝑅𝑅) and air temperature (𝑇𝑇) at the desired levels (Sensirion 2001).  

𝐻𝐻 =  𝑙𝑙𝑙𝑙𝑙𝑙10 (𝑅𝑅𝑅𝑅)−2
0.4343

+ 17.62∗𝑇𝑇
243 .12+𝑇𝑇

         (3.1) 

𝑇𝑇𝑑𝑑 = 243 .12∗𝐻𝐻
17 .62−𝐻𝐻

              (3.2)  

Next, dew point temperature was used to calculate the saturation mixing ratio (es) and then the 

mixing ratio (r) (Davies-Jones 2009).  

𝑒𝑒𝑠𝑠 = 6.112 ∗ 𝑒𝑒
17 .67∗(𝑇𝑇𝑑𝑑−273 .15)
𝑇𝑇𝑑𝑑−273 .15+243 .5             (3.3) 

𝑟𝑟 =  0.6220∗𝑒𝑒𝑠𝑠
𝑋𝑋𝑋𝑋𝑋𝑋−𝑒𝑒𝑠𝑠

             (3.4) 

The “𝑋𝑋𝑋𝑋𝑋𝑋” in equation 3.4 above refers to the value of the pressure level in millibars where the 

mixing ratio is calculated (i.e. 950 mb, 850 mb, 700 mb, or 500 mb). After calculation, mixing 

ratios are plugged into Equations 2.5-2.7 to calculate the EPTP values at layers A-C. Once both 

the temperature and relative humidity data were ingested for each isobaric level and the mixing 

ratios were calculated, the sub-indices of GDI were calculated with the addition of the empirical 

constants.  

As stated previously in Gálvez and Davison (2016), the MWI and II are inhibiting factors 

of convection and are only included in the final GDI values if their values are negative. 

Furthermore, the Co index was an important factor for this study, especially when monitoring the 

GDI values over the Ethiopian highlands (Donndelinger 2018).  

After calculation, GDI was plotted for Africa. Initially, the Africa and Asia political and 

geographical maps used by Donndelinger (2018) were used to plot the GDI, which were 

accessed from the CIA World Databank II website (Pape 2004). A mapping package available 
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online called M_Map was downloaded for this study. This package increased color, map 

projection, and border options (Pawlowicz 2018). In order to determine if the GALWEM had 

any significant model biases, each base parameter that makes up the GDI was plotted. 

Temperature and relative humidity were plotted at all four isobaric levels and potential 

temperature was plotted for layers A-C for three separate days and three separate times using the 

GALWEM data. The same procedure was done for the GFS analysis data, which was used as the 

observation, and each day/time plot was compared. Upon completion of this test, the variable 

plots for the GALWEM 00 HR forecast and the GFS 00 HR analysis resembled one another very 

closely in terms of shape, coverage, and magnitude. This examination further identified that the 

GALWEM data did not have any noticeable model biases present.  

The next step was to further ensure the GALWEM GDI plots resembled the NOAA GDI 

forecast plots on the NCEP website. The colorbar was adjusted such that values of 10 or less 

were gray or black, values of 10-30 were blue or green, values of 30-40 were yellow, values of 

40-50 were orange, values 50-65 were red, and values over 65 were magenta. With the minor 

adjustments to the colorbar, the three plots lined up quite well (Figures 3.1 and 3.2).  
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Figure 3.1: A comparison of NOAA-calculated GDI (GFS 0.5° horizontal resolution, top) and a 

recreation of GDI using GFS 1° horizontal resolution (bottom) for 22 Aug 2018 at 12Z. 
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Figure 3.2: 00 HR GDI forecast for 22 Aug 2018 using 17 km GALWEM data.  

 

K Index (KI) Calculation 

Plotting KI was accomplished in a similar fashion to plotting the GDI. The KI utilized the 

same latitude and longitude area bounds of 25°S - 25°N and 20°W - 55°E, as well as the same 

M_Map projection. When calculating the KI, Equation 2.1 was used instead of Equations 2.2- 

2.16. Equation 2.1 required two dewpoint temperature values that are not included directly in the 

analysis GRIB2 files or the GALWEM 00 HR forecast files. In order to calculate these dewpoint 

temperatures, Equations 3.1 and 3.2 were utilized again to convert the air temperature and 

relative humidity at the 850 and 700 mb levels into dewpoint temperature. These dewpoint 

temperatures were then inserted into Equation 2.1 to calculate the KI over the study region.  

Minor contour adjustments were made to match the KI thunderstorm frequency estimates 

(Table 2.1). A range of values from -30 to 50 were used for KI, while the GDI axis included a 

range of -30 to 70. Colors of GDI indices vary in increments of 10, as depicted in the colorbar on 
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the right of Figure 3.2. The KI map was made to look more similar to the GDI map with grey and 

black representing low KI values and no potential for convection, with green to magenta colors 

representing various convective potentials (Figure 3.3).  

 
Figure 3.3: KI 00 HR forecast plotted using 17 km GALWEM data over Africa on 10 Jun 2018 

at 18Z. 
 

Plotting ATDNET Lightning Data 

In order to verify the accuracy of the GDI forecasts, lightning data was plotted on the 

Africa map in Matlab across the entire study region. Lightning data was provided by the 14th 

Weather Squadron (14WS) and was collected from the Arrival Time Difference (ATD) 

thunderstorm detection system called Sferics or ATDNET (AFWA 2012). Sferics is a system 

used by the United Kingdom Meteorological Office. Sferics utilizes the arrival time differences 

of the signals from lightning strikes to identify location of the strikes. The ATDNET is a network 

of sensors for lightning detection. New Outstation (NOS) sensors monitor very low frequency 
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(VLF) of about 13.7 kHz, or a radio wave on the electromagnetic spectrum (AFWA 2012). This 

allows sensors to have a very long monitoring range. Once four NOS sites detect a signal from a 

lightning strike, the flash is located and recorded based on the arrival time at all four stations.  

To display these strikes spatially, data extracted from these files included date, time, 

latitude, and longitude of each strike. The same latitude and longitude window used for GDI was 

utilized for lightning strikes to stay consistent. Lightning strikes were plotted as cyan asterisks 

over the GDI and KI plots to indicate where lightning was detected and to allow an initial 

inspection of index accuracy (Figure 3.4).  

 
Figure 3.4: GDI using 17 km GALWEM on 24 Jul 2018 at 06Z with Sferics lightning data (cyan 

asterisks) for the same day and time overlaid. 
 

NRL and Weather.us IR Satellite Images 

Lightning data was compared to satellite images at the corresponding date and time. Most 

satellite imagery was acquired from the Naval Research Laboratory (NRL) Next Generation 
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Weather Satellite Project (NexSat), in partnership with the Cooperative Institute of Research in 

the Atmosphere (CIRA) (NexSat 2011). Some of the NexSat images were missing from the 

archived imagery page. For this reason, a secondary satellite source was accessed via the 

Weather.us webpage. Weather.us obtains map data from OpenStreetMap contributors, in 

conjunction with the GIScience Research Group at Heidelberg University (Weather.us 2018). 

NexSat images come from the Meteo8 satellite’s infrared (IR) images, while Weather.us images 

come from the European Organization for the Exploitation of Meteorological Satellites 

(EUMETSAT). Both IR images use a color filter that highlights cold cloud top temperatures of -

20°C or colder. The NexSat images cover the majority of the African continent, with only a few 

degrees of longitude not captured on the eastern edge of the image (Figures 3.5). Imagery from 

Weather.us covers the entirety of the African continent with similar resolution to the NexSat 

imagery (Figure 3.6).  

 
Figure 3.5: NexSat Meteo8 color IR satellite imagery over Africa on 27 Jul 2018 at 00Z with 

cloud top temperatures (°C) indicated by the filter on the bottom of the image.   
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Figure 3.6: Weather.us EUMETSAT color IR satellite imagery over Africa on 10 Aug 2018 at 

06Z with cloud top temperatures (°C) indicated by the filter on the bottom of the image. 
 

After the lightning was plotted on the index forecast image, the lightning strikes were 

compared to the IR satellite imagery from the same time frame in order to ensure the strikes were 

associated with cold cloud tops. When referencing forecast model skew-T profiles, it was noted 

that the freezing level over Africa was between 550-500 mb or 16,000-19,000 feet (ft). In order 

for cloud electrification to occur, frozen drop or graupel particles must be present. Most lightning 

that occurs over Africa was associated with 40 dBZ echoes reaching a height of 8 km, 

approximately 26,000 ft, with clouds tops extending above that height (Toracinta et al. 2001). 

The -20°C level was approximately 25,000 ft aloft on model skew-T profiles in December, 

which corresponds to the white shades on the Meteo8 colored IR imagery used in this study 

(Donndelinger 2018). If lightning strikes did not match up with areas of appropriate cloud 
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heights, they could be removed. During the comparison between each satellite image and the 

plotted lightning strikes, all lightning strikes were kept.   

 

Methods for Comparing Index Forecasts 

Remaining consistent with methodology used in Donndelinger (2018), the clustering 

analysis method was used in the research. Clustering analysis has been used in several similar 

studies including identification of storms, clouds and precipitation fields (Marsban and 

Sandgathe 2005, Singh and Gill 2013). Cluster analysis recognizes specific features in both 

forecast and observations fields for the purpose of comparing their characteristics (Singh and 

Gill 2013). In the case of this study, the lightning and forecast data are grouped into the same 

number of clusters, or grouping of data points, then observation and forecast clusters are matched 

via geographical proximity and their location and spatial coverage differences are noted. 

Differences in location are referred to as location error and spatial or coverage differences are 

referred to as area error. This verbiage was repeated in this study to remain consistent with 

Donndelinger (2018). Lightning was used for verification, so the number of lightning clusters 

was chosen as the observed cluster while the index (GDI or KI) cluster was the forecast cluster. 

Although the GALWEM offers a higher resolution data set than the GFS 1° by 1° analysis data, 

lightning strikes occur at scales smaller than 17 km, and therefore cluster analysis was the most 

effective solution instead of a point-by-point method.  

K-Means Clustering Method  

K-means clustering focuses on idealizing the number of clusters to divide the data points 

amongst by balancing the number of clusters with the total sum of the distances between the data 

points and their centroids (Singh and Gill 2013). A centroid is the center of a cluster and is 
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calculated by averaging the locations of all the points within a cluster. K-means clustering 

groups data points in Matlab by randomly placing k number of centroids in the data and 

assigning each data point to the closest centroid (Singh and Gill 2013). The distance of each data 

point to the centroid is then summed. Next, Matlab randomly replaces the ‘k’ number of 

centroids throughout the data again and places the data points into the new clusters. This was 

done 10 times for each k number of clusters picked and the smallest sum of distances between 

data points and centroids was saved.  

The number of clusters was first set to one and the lowest total sum of all distances 

between each data point and the centroid was recalled (Donndelinger 2018). Then, the same sum 

of distances was calculated with two, three, four, etc. clusters, up to 10 clusters. Once all the 

sums of distances were saved, the idealized number of clusters was identified using what is 

referred to as a k means plot (Figure 3.7).  

 
Figure 3.7: An example k means plot, full view from 1-10 clusters (left) and a zoomed-in view of 

2-10 clusters (right), highlighting the curve indicating the ideal number of clusters, 5.  
 

The total sum of distances between each data point and the centroid of the lightning 

cluster yielded total distances on the order of 106 and up to 107, as shown on the y-axis (Figure 

3.7). This makes choosing an ideal number of clusters difficult, so a plot focusing on the rapidly 

changing number of point-to-centroid distances was created to highlight the ideal number of 
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clusters. The k means cluster plot emphasizes the decrease in total point-to-centroid distance 

with increasing cluster number, k (Singh and Gill 2013). In the example above, 5 clusters are 

chosen for k as 5 is the last increase in cluster number associated with a significant decrease in 

total point-to-centroid distance. The ideal, k, number of clusters is found at the bottom of the 

“knee” or “elbow” made by the curve in the k means plot or the last, sharp change in slope on the 

plot. Beyond this point on the curve, the total sum of distances does not significantly decrease 

with additional clusters. By using this method, the number of clusters was chosen objectively 

based on the k means plot of the lightning data at each timeframe. The ideal number of clusters 

was then applied to the lightning data and the GDI was analyzed at each particular time.  

Error Analysis Method 

Error analyses were conducted to assess forecast quality of the applicable index at each 

desired timeframe. Observed lightning data are plotted along with the desired index over the 

Africa map for a chosen time (Figure 1.1). Only the data points that indicated scattered 

thunderstorms were likely to occur were kept. The scattered thunderstorm threshold of 35 or 

greater was set for the GDI, while values of 30 or greater were kept for the KI (Figure 2.6 and 

Table 2.1) (Donndelinger 2018). An example of the resulting lightning and scattered 

thunderstorm threshold data can be seen in Figures 3.8 and 3.9.  
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Figure 3.8: Lightning data plotted with cyan asterisks and GDI values 35 or above plotted with 

red dots on 24 May 2018 at 00Z.  
 

 
Figure 3.9: KI values 30 or greater plotted with red dots and lightning data plotted with cyan 

asterisks on 24 May 2018 at 00Z.  
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Figure 3.10: Lightning data (left) and GDI at or greater than 35 (right) divided into clusters on 24 

May 2018 at 00Z.  
 

Then, the lightning data were divided into the ideal number of clusters using the method 

described above (Chapter III, K-Means Clustering Method). Once the ideal number of clusters 

was determined, both the lightning and index data at or above the scattered thunderstorm 

threshold were divided into as many clusters (Figure 3.10). Specified colors were assigned to 

clusters with lightning cluster one not always lining up with index cluster one. Clusters were 

matched by the researcher examining clusters and paired based on geographic proximity. After 

clusters had been matched, the location and area error were calculated.  

Clustering allows the researcher the ability to assess both location and area errors. These 

factors were calculated with the following method: 

Location Error = Distance between forecast cluster centroid and observed cluster centroid 

Area Error = Average distance between data points and forecasted cluster centroid – average 

distance between data points and observed cluster centroid 

Area error represents the expanse of a particular cluster, with each point-to-centroid distance 

weighted equally. Area error is the difference between the paired cluster’s average point-to-

centroid distances. When assessing how well a forecast cluster compares to the observed cluster, 

one should observe the location and areal coverage of the clusters in question. Both of these error 
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calculations were calculated for each cluster pair at each time. Location and area error values 

from each cluster pair were averaged for each of these timeframes.  

GALWEM data for this study spans various days from late April through late September 

2018. In order to have a sufficient number of study days and times, the 10th through 15th and 22nd 

through 26th of each month was selected for analysis with every six-hour period of 00Z, 06Z, 

12Z, and 18Z covered for the selected day. Once the error values were calculated across all days 

and times, the error data was organized by month, Zulu time, convective regime, and West and 

East Africa.  

For monthly analysis, data was collected across all days and times for each particular 

month. Then, the GDI and KI location and area errors were compared at the 95% confidence 

level to determine any monthly trends. While data could only be collected from late April 

through September, it was noted in Donndelinger (2018) that the location error was largest in the 

winter months, making this less of an issue for this study. 

Next, the location and area error data were sorted according to Zulu time. This method 

allowed for at least 48 hours of separation between cases, which is generally enough time to 

allow for a change in weather patterns. After this, convective regimes were analyzed.  

Convective regimes were determined subjectively by analysis of colored IR satellite 

imagery obtained via the Naval Research Laboratory and Weather.us websites (NexSat 2011; 

Weather.us 2018). To remain consistent with Donndelinger (2018), four convective regimes 

were used to categorize the cases: airmass thunderstorms (AT), Mesoscale Convective System 

(MCS), airmass predominate with MCS (AT/MCS), and MCS predominate with airmass 

thunderstorms (MCS/AT). The location and area error were analyzed for each regime across all 

times to determine which convective pattern, if any, the indices forecasted most accurately.  



 40 

Lastly, in order to determine if the indices exhibited lower location error in one region 

compared to the other, and compared against the other index, new lightning data was requested 

for West and East Africa. The dividing line for West and East Africa was chosen as 25°E 

longitude, as a meridional line drawn here represents an accurate division of the western and 

eastern portions of the continent (Figure 3.10). This dividing line also allows for fairly even 

distribution of the Southern Hemisphere land area between the west and east regions, as well as 

separation between the highlands to the east and the monsoon region to the west.  

 
Figure 3.11: Coastline map of the region of interest (left) and topographic/land cover map (right) 

with vertical red line along the 25°E longitude line indicating the east and west boundary line 
(King 2006). 

 

Bootstrapping Statistical Method 

Bootstrapping is a statistical method used to expand a data set by inflating it without 

alteration of its characteristics for statistical analysis. Bootstrapping is based on the law of large 

numbers, making it a suitable method for creating sufficient data in order for the empirical 

distribution to be a good approximation of the true distribution (Orloff and Bloom 2014). This 

technique has been well known since the 1970s, but only became practical in more recent 

decades with high-speed computational resources to implement the method. Computations are 
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conducted on the data itself to estimate the variation of statistics that are computed from the 

same data (Orloff and Bloom 2014). In order to allow for independent cases that included 

variation in weather patterns, all the even days were chosen across the range of collected data. 

These days were the 10th, 12th, 14th, 22nd, 24th, and 26th. Four times were analyzed for each day 

including the 00Z, 06Z, 12Z, and 18Z times. GALWEM data was collected from the 22nd - 26th 

of April and then the 10th - 15th and 22nd - 26th of each month for the months of June-September. 

This resulted in 33 cases for each Zulu time.  

The bootstrapping statistical analysis was done in several ways. First, all error data across 

all dates and times were ingested. Different means were then calculated for each timeframe. The 

code then sampled the given error data with replacement and calculated an artificial mean value. 

Each artificial mean value is close, but not necessarily equal to, the actual mean of the data. 

10,000 artificial means were calculated from each data set to achieve a quality estimate of the 

95% confidence interval (Orloff and Bloom 2014). The 95% confidence level is considered to be 

high confidence and is the desired level for this research. Bootstrapping allows researchers to 

estimate confidence intervals with high accuracy, even with small data sets. 

There are multiple ways in which confidence intervals can be calculated from 

bootstrapped data. For a 95% confidence interval, the percentile method would use the critical 

values of .975 and .025, or the 9,750th and 250th largest values in a data set with 10,000 members 

as the end points above and below the actual mean, respectively (Orloff and Bloom 2014). 

Another, and more accurate method, is the bias-corrected and accelerated (BCa) method (Efron 

and Tibshirani 1993). The BCa method comes closest to fulfilling the standard of good 

confidence intervals, meaning they closely resemble exact confidence intervals and give 

dependably accurate coverage probabilities in all situations (Efron and Tibshirani 1993). 
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Confidence intervals constructed using BCa are more accurate overall and recommended 

especially for small sample sizes, such as the limited MCS cases in this study (Wilks 2011). The 

BCa method is more advanced due to its incorporation of the cumulative distribution function 

(CDF) of the standard Gaussian distribution along with a bias correction parameter that reflects 

median bias of the bootstrap distribution to account for partiality (Wilks 2011). This method also 

includes the acceleration parameter, which corrects for the skewness of the data. The BCa method 

produces more accurate confidence intervals by incorporating more parameters into its 

calculation that encapsulate the characteristics of the data.  

BCa confidence intervals are calculated using the desired number of samples (10,000 in 

this study), the desired calculation (averaging), and the data for calculating the confidence 

intervals. Error bars were plotted using the errorbar function with the mean of the data set, the 

lower bounds, and upper bounds of the confidence interval as inputs. Confidence intervals for 

each data set were calculated and plotted on graphs (Figure 3.12). A 95% confidence interval is 

shown, where 95% of all possible mean values fall into the range encapsulated by the lower and 

upper error bar boundaries. 

 
Figure 3.12: Sample confidence interval plot with 95% confidence interval (error bars) for the 

April 2018 GDI location error.  
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Confidence intervals were created for location and area error data using this method for each 

index across all days and times.  

 

Summary 

In order to conduct an error analysis of convective index forecasts in this study, the 

following methodology was implemented. First, convective indices were plotted using the 

GALWEM 00 HR forecast data, with lightning overlaid and validated using IR satellite imagery 

from the same timeframe. Then, the lightning and index data were separated into the same 

number of clusters using the k-means clustering method. Paired clusters were examined to 

calculate both location and area error values. Lastly, the error data was expanded using 

bootstrapping statistical methods and confidence intervals were calculated using the BCa method. 
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IV. Results and Analysis 
 

Chapter Overview 

The purpose of this chapter is to analyze and discuss the results of the monthly, 

respective Zulu time, convective regime, regional, and GDI-A studies. A brief model and 

resolution comparison is also made between the GFS and GALWEM. Furthermore, a short 

discussion on Kelvin waves and their connection to forecast accuracy is included. The location 

and area errors are discussed to quantify how far off the forecast clusters were from the observed 

lightning clusters.  

 

Monthly Study 

As mentioned previously, data was collected from late April through late September of 

2018 because the 16th Weather Squadron was only able to pull data from ten days prior. Based 

on the small sample size for each month, all times (00, 06, 12, and 18Z) were used for each 

monthly analysis. April data comprised the 22nd, 24th, and 26th of the month with four times for 

each day, resulting in 12 total samples. All other months included the 10th, 12th, 14th, 22nd, 24th, 

and 26th of the month with the same four Zulu times for a total of 24 samples.  

For the original cases across all dates and times, the highest location error for GDI was 

found in May and the lowest location error for GDI was determined to be in the month of July. 

The highest and lowest area error for GDI was found to be in the months of August and May 

respectively. Similarly to the GDI, the location error for the KI was calculated to be the highest 

in May. The location error for the KI was lowest in August. The highest and lowest monthly area 

error for KI was determined to be in the months of April and July, respectively.  
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Next, the location and area errors were bootstrapped for each set of monthly data to 

ensure robust confidence intervals were being calculated and the 95% confidence interval was 

calculated for the bootstrapped data set. The monthly location and area error confidence intervals 

are plotted in blue for GDI and red for KI (Figure 4.1). The closer an error is to zero indicates the 

closer the forecast (respective index) is to the detected lightning strikes (observation). Results 

indicate that GDI and KI mean location error are relatively close in the spring and early summer 

months (April, May, and June) but begin to show some separation in the mid-to-late summer 

months (July and August) into the Fall (September). This indicates a departure from the results 

of Donndelinger (2018), in which the furthest separation of the location error between the two 

indices was shown in May and the August location error means nearly overlapped (Donndelinger 

2018). In fact, the GDI and KI May data location errorbars for the 95% confidence level are 

actually the most similar among the months in this study. However, confidence intervals across 

all months overlap at the 95% confidence level, placing less confidence that one index’s forecast 

is more accurate than the other’s.  

Further comparison of these location forecasts for monthly location error shows a 

decrease in the mean location error from May to July for GDI, and an overall negative trend in 

KI location error mean for KI as well. This is in line with the results of Donndelinger (2018), 

which show a decrease in location error between the spring and summer months for both GDI 

and KI (Donndelinger 2018). Upon further analysis of the GDI and KI location error for August, 

the 90% confidence intervals no longer overlap, indicating that it can be said with 90% 

confidence that KI decreases location error when compared to GDI in the month of August 

(Figure 4.2). This result is interesting and could relate to KI’s relative skill at airmass 

thunderstorm forecasting. This will be discussed more in the convective regime study. Overall, 
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the GDI and KI performed similarly in terms of location forecast across the monthly study 

period.  

 
 

 
Figure 4.1: Monthly GDI/KI location (top) and area (bottom) error confidence intervals at the 

95% confidence level. 
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Figure 4.2: 90% Confidence Interval for the total location error (left) and zoomed-in location 

error (right) for August showing separation between GDI and KI. 
 

Zulu Time Study 

After the monthly data and confidence intervals were calculated and analyzed, the error 

data were further analyzed by each Zulu time. For the GDI, the highest and lowest location error 

was calculated to be the 12Z and 18Z times, respectively. The highest and lowest area error for 

the GDI was determined to be 00Z and 18Z, respectively. For the KI, the highest location error 

was found to be among the 06Z cases, with the highest area error a tie among the 00Z and 06Z 

times. The lowest location and area error was found to be in the 18Z cases for the KI. The 

bootstrapped 95% confidence intervals for location and area error across each Zulu time for both 

indices is shown in Figure 4.3. The Zulu time appears to have a slight correlation to the 

convective regimes. This will be discussed in the next section.  
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Figure 4.3: 95% confidence intervals for GDI and KI location (top) and area (bottom) errors 

across each Zulu time. 
 

Convective Regime Study 

The third analysis technique grouped similar convective regime cases together to 

determine forecast accuracy, as well as any possible trends in the location and area error for each 

predominate thunderstorm type. First, purely airmass thunderstorm days were grouped together 

across all times and their location and area errors were averaged. The four convective regimes 
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were kept from the previous study to keep consistency. These four convective regimes are as 

follows: purely airmass thunderstorms (AT), purely MCS convection (MCS), predominately 

airmass storms with MCS convection present (AT/MCS), and predominately MCS convection 

with airmass storms present (MCS/AT). The highest and lowest location error for the GDI was 

found to be in the MCS and AT cases, respectively. For GDI, the MCS cases also exhibited the 

highest area error while the AT/MCS cases exhibited the lowest area error. Therefore, when 

using the GALWEM, the GDI performs best when the primary convection type is airmass 

thunderstorms and worst when the primary convection type is MCS.  

For KI, the location errors all fell within .092 degrees of one another, suggesting the KI 

performs with similar accuracy no matter the convective regime. However, the location error was 

highest among the AT cases, with the lowest location error a tie between the MCS and AT/MCS 

regimes. This suggests the opposite skill of the GDI in that the KI performed best when the 

primary convection type was MCS-based, and worst when the primary convection type was 

airmass thunderstorms. These results are interesting because they differ from the results for GDI 

that Donndelinger (2018) found. In the previous study, Donndelinger (2018) determined that the 

location error for GDI was the highest when the predominate source was airmass storms, while 

the lowest location error for GDI was achieved when the predominate convection source was 

from MCSs. This suggests that the higher horizontal resolution model is able to more accurately 

forecast the location of smaller convective systems. Furthermore, Donndelinger (2018) found 

that the GDI was able to outperform KI in the predominately MCS cases but was not able to 

outperform KI in the predominately AT cases at the 95% confidence level. In this study, the GDI 

consistently had a higher mean location error than the KI, but similar to Donndelinger (2018), 

results indicate this is not significant at the 95% confidence level. Another similarity between 
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this study and Donndelinger (2018) is that the mean GDI location error fluctuated much more 

than the KI. Most importantly, all of the location error confidence intervals overlap, and 

therefore no one index can be selected with 95% confidence over the other index when they have 

the same convective regime.  

Initially, it was thought that connections could be drawn between the Zulu time analysis 

study and the convective regime analysis study. Since it was observed that the AT regime 

exhibited the lowest location error of the four convective regimes, determining the distribution of 

these regimes by Zulu time provides insight to this theory. For this study, there were 47 AT 

cases. In the previous Zulu time study, the 18Z and 00Z times exhibited the lowest and second 

lowest location errors overall, respectively. Furthermore, the location errors of the 18Z and 00Z 

timeframe were lower than the 06Z and 12Z timeframe location errors by about 1.5 degrees each. 

There were 7 AT cases for the 18Z timeframe and 7 AT cases for the 00Z timeframe. Therefore, 

only 14 of the total 47 AT samples fall during these two timeframes. Furthermore, the most AT 

cases (21) of any timeframe actually occurred 12Z. The 12Z timeframe had the highest location 

error of all four Zulu time groups. This is quite counterintuitive because airmass storms are 

generally most prevalent during the afternoon. For the aforementioned reasons, it can be 

concluded that no correlation exists between the Zulu time and the convective regime location 

error. The confidence intervals for each convective pattern are shown in Figures 4.4 and 4.5.  

The location error for purely MCS storms exhibits the largest error bar variation due to 

the 14 June 00Z example, which had location errors of 22.55 and 16.92 degrees for the GDI and 

KI, respectively. It was decided that this time should still be included due to the small sample 

size of 12 for the purely MCS cases.  
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Figure 4.4: 95% confidence intervals for GDI and KI location error across convective regimes. 

 

 
Figure 4.5: 95% confidence intervals for GDI and KI area error across convective regimes. 

 
 

Regional Study 

The GDI was developed for the tropics and performs particularly well in the 15°-25° 

latitude belts, especially over oceans and eastern fringes of continents where trade wind climate 

prevails (Gálvez and Davison 2016). Initial trends appeared to support lower area error over the 
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western half of the African study region, providing motivation to test the above finding by 

Gálvez and Davison. Therefore, the African study region of 20°W - 55°E and 25°S - 25°N was 

divided into West and East Africa using a subjective dividing line of the 25°E longitude line 

(Figure 3.11). New lightning data was requested from the 14th Weather Squadron that 

encompassed the new West Africa region (20°E - 25°E) and the new East Africa region (25°E - 

55°E). Next, the same methods described in Chapter III were applied for all sampled days and 

times across the west and east to calculate location and area errors for each region.  

Based on time permitted, these errors were not further tested by month, Zulu time or 

convective regime, although this would be a useful expansion of the current research. Once the 

location and error areas of both the GDI and KI were calculated for each region and 

bootstrapped, the 95% confidence intervals showed that the overall location error mean for the 

West African region was lower than location error mean for the East African region. One 

interesting note is that the KI outperforms the GDI in the west for location error while the 

opposite is true in the east. Furthermore both indices had a lower location error for West Africa 

than East Africa. However, neither of these results can be concluded with 95% confidence for 

either region (Figure 4.6).  

The area error was overall very close in both the west and east for like indices with the 

GDI significantly outperforming the KI. Unlike the location error, these results were significant 

at the 95% confidence level, and possibly higher, for area error (Figure 4.7).  
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Figure 4.6: 95% confidence intervals for GDI and KI location error for West and East Africa.   

 
Figure 4.7: 95% confidence intervals for GDI and KI area error for West Africa and East Africa. 

 

Although the GDI location error for the west is only about .2 degrees less than the 

location error for the eastern GDI, it is still interesting that this contradicts the findings of Gálvez 

and Davison. This could be due to several factors. First, only 33 days were sampled across 6 

months. This is by no means an accepted population size for a climatic data study. Generally, the 
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meteorological community accepts 30-year data sets as a substantial population size for climate 

studies (Wuebbles 2017). Access to GALWEM reanalysis data would allow a more robust and 

trustworthy data set and is considered an area of future research. Furthermore, the Saudi Arabian 

Peninsula was included in the East African study region. Saudi Arabia is notoriously arid, 

especially in the low-levels, and this makes the GDI a very unsuitable convective index for the 

region due to its preference for deep layers of moisture. If possible, it would be ideal to exclude 

Southwest Asia from this study to determine quantitatively if this improves the East Africa error. 

Another possibility for the higher location error mean in the east could be because the 

GALWEM under-forecasts orographic precipitation due to smoother orography (Boyle 2016). 

This would create an issue in East Africa, as the Ethiopian highlands, Kenya, and Tanzania 

provide a broad region for orographic lift and precipitation. Overall, West Africa has a lower 

elevation than East Africa. Another possible reason that the location error mean was lower 

overall in West Africa compared to East Africa could be related to Kelvin wave influence on 

precipitation and convection during. This study covers the late spring through early fall months 

of the Northern Hemisphere (April – September). As previously stated in Chapter I, Kelvin 

waves modulate African precipitation, especially along the equator and during the West African 

Monsoon period (April-July). Therefore, Kelvin waves could be aiding the convective indices’ 

forecast, especially for the KI, which showed significant difference in location error between 

West and East Africa. Lastly, both indices seemed to have some trouble with convection in the 

far southern portions of the study region. Although these regions are within the 15°-25° 

latitudinal belt for which Gálvez and Davison state the GDI works exceptionally well, there were 

several examples in this study where this skewed the location error for that particular timeframe. 

The poor forecast accuracy in Southern Africa is probably because the dates used in this study 
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encompass the Southern Hemisphere winter (April-October), which generally coincides with the 

dry season (Zijlma 2018). Donndelinger (2018) found that location error was highest during the 

winter months, so this correlates well with this finding.  

 

Model Comparison Study 

Since the GALWEM was used in this study and Donndelinger (2018) used the GFS, it 

was imperative that a brief comparison of like data sets should be completed. Although 

Donndelinger (2018) focused mainly on 2016 cases and this study focused on 2018, like months 

can be compared due to similar climate patterns in the tropics. This allows conclusions to be 

drawn about model performance. It has been noted that the GFS data used in Donndelinger 

(2018) was 1° horizontal resolution while the GALWEM data used in this study was 17 km 

horizontal resolution. The higher resolution model data for GALWEM was requested in an 

attempt to improve upon the poor forecast accuracy of airmass thunderstorms using the GDI and 

KI via GFS reanalysis data. The 17 km GALWEM data was the highest available horizontal 

resolution data available for download and would therefore aid in the resolution of terrain, 

smaller-scale storms, and other weather features. While this theory is sound, the results show the 

opposite effect for this comparison. Higher location error was noted between bootstrapped means 

of the GDI in all matching 2016 and 2018 months, and two out of three matching months for KI 

(Figure 4.8). This result could indicate that the 17 km data is not high enough to fully resolve 

airmass thunderstorms.  

The GALWEM is based on the United Kingdom Meteorological (UKMet) Office’s 

Unified Model. The GALWEM, like the Unified Model, is a grid point model. The 17 km 

horizontal resolution of this model indicates that there are 17 kilometers between each grid point. 
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The smallest features that can be forecast in a grid point model should have full wavelengths of 

five to seven grid points (Colorado State 2003). 

 
Figure 4.8: Similar month 95% confidence interval comparison between the current and 

Donndelinger (2018) study showing location error. Pink outline indicates 2016 months and green 
outline indicates 2018 months. 

 

 
Figure 4.9: Similar month 95% confidence interval comparison between the current and 

Donndelinger (2018) study showing area error. Pink outline indicates 2016 months and green 
outline indicates 2018 months. 

 
This means that a horizontal resolution of approximately 4 kilometers is needed to fully resolve a 

typical airmass thunderstorm, which is on the order of 24 km in diameter (NWS 2018). While 

this very high resolution was not available at this time, repeating these studies with data using at 

least 4 km horizontal resolution would be a useful extension of this research. Furthermore, an 

interesting trend was present for the area error in the like-months study.  

When comparing the 2018 months with the 2016 months, it can be noted in Figure 4.9 

that the GDI had lower area error in each case. The constant improvement for areal thunderstorm 
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coverage has been one of the most significant findings of this study. Donndelinger (2018) found 

that the GDI outperformed the KI in terms of areal thunderstorm coverage in all studies except 

the intra-seasonal study, when convection was predominately from airmass thunderstorms. In 

this study, the GDI consistently outperformed KI under all situations, including airmass 

thunderstorms, and the difference between the area error values of like months, as well as 

between the GDI and KI, appears to be even more significant when using the 17 km GALWEM 

data. The consistent reduction in area error for GDI was promising and could possibly be even 

more significant if a higher resolution data set were used.  

 

GDI-A Study 

In the previous study, Donndelinger (2018) tested several additions and alterations to the 

GDI in an attempt to tune the index to African thunderstorm forecasting and more specifically, to 

reduce the location error of the index. It was determined that average vertical velocities, upper-

level potential temperature proxies, and upper-level relative humidity additions to the GDI, either 

had little-to-no effect on the location error, or actually increased the location error of the 

forecast. However, the previous study noted that the low and mid-level relative humidity and 

equivalent potential temperature proxies each showed reduction of location error for the sampled 

days in August 2016. While these exact dates were not available for the GALWEM data set used 

in this study, the August 2018 cases were used in this GDI-A study in order to remain consistent 

with the Donndelinger (2018) GDI-A study. Furthermore, August is one of the most active 

thunderstorm months in Africa.  
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GDI-A: Relative Humidity (RH)  

The mid-level relative humidity at 700 mb was tested first as it showed the most promise 

in Donndelinger (2018). The GDI-ARH700 was calculated by simply adding the 700 mb relative 

humidity onto the GDI calculation, as noted in Equation 3.5.  

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅700 = 𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐼𝐼𝐼𝐼 + 𝐶𝐶𝐶𝐶 +𝑅𝑅𝑅𝑅700 (3.5) 

 
Figure 4.10: GDI-ARH700 and lighting plotted over the study region on 26 Aug 2018 at 00Z. 

 

Once the GDI-ARH700 was calculated, it was plotted over the study region and the same basic 

method as described in Chapter III was used to determine location and area error (Figure 4.10). 

One small change that was needed to the code, as described in Donndelinger (2018), was the 

alteration of the scattered thunderstorm threshold. The same threshold of 110 (GDI), as used in 

the previous GDI-ARH700 study, was used here to keep consistent methods (Donndelinger 2018). 

When the initial GDI location error for August was compared against the GDI-ARH700, it was 

determined that the addition of relative humidity at 700 mb to the original GDI, did in fact 

reduce the location error. However, these results were not significant at the 95 or 90% 
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confidence levels (Figures 4.11 and 4.12). The use of the higher-resolution GALWEM data did 

not significantly improve the results from the previous study and it can determined that the 

addition of 700 mb relative humidity to the GDI alone, was not enough to improve location 

forecasting at the 95% confidence level. 

 
Figure 4.11: 95% confidence interval comparison of GDI (blue) and GDI-ARH700 (red) for the 

August 2018 samples.  
 

 
Figure 4.12: 90% confidence interval comparison of GDI (blue) and GDI-ARH700 (red) for the 

August 2018 samples.  
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GDI-A: Equivalent Potential Temperature Proxies (EPTP)  

The next step was to test the equivalent potential temperature proxies (EPTPs). The EPTP 

modification, as noted in Donndelinger (2018), involves changing only the level at which the 

highest EPTP was calculated.  

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸𝐸𝐸 (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) +𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐼𝐼𝐼𝐼 + 𝐶𝐶𝐶𝐶 (3.6) 

In Equation 3.6, XXX refers to the pressure level (in mb). For these GDI-AEPTP modifications, 

Donndelinger (2018) altered the level at which the EPTPc was calculated, changing the level 

from 500 mb to 900 mb, 850 mb, 800 mb, 700 mb, and 600 mb (Formula 2.4). These levels were 

chosen based on the concept that the 500 mb dynamics in the higher latitudes of the Caribbean 

Sea would be captured at lower levels in the lower latitudes of northern Africa (Donndelinger 

2018). It was determined that the low-level EPTP modifications worked the best for reducing 

location error and that the EPTP600 alteration actually increased location error. Of the three low-

level EPTP modifications, EPTP900 reduced the location error the most drastically 

(Donndelinger 2018). Therefore, EPTP900 was selected for analysis in this study to determine if 

the 17 km GALWEM data could improve the location error further.  

Once the GALWEM GDI-AEPTP900 was plotted, the GDI-AEPTP900 values were further 

separated into clusters of 55 or greater to indicate scattered thunderstorm potential (Donndelinger 

2018) (Figure 4.14). Much like Donndelinger (2018), results of this GALWEM GDI-AEPTP900 

study indicate that the location error was also reduced for the August 2018 data when compared 

to the original GALWEM GDI location error values. In fact, the location error reduction was 

significant even at the 90% confidence level (Figure 4.15). This was a significant improvement 

to some of the other case studies analyzed in this research and could be an area of further 

research.  
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Figure 4.13: GDI-AEPTP900 values and detected lightning in cyan asterisks for 26 Aug 2018 at 

18Z. 

 
Figure 4.14: GDI-AEPTP900 values of 55 and greater in red dots with lightning plotted over top in 

cyan asterisks for 26 Aug 2018 at 18Z. 
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Figure 4.15: 90% Confidence Interval for GDI-AEPTP900 (red) compared to the original GDI 

(blue) for August of 2018.  
 

 

Elevated Layer A Study 

Upon completion of the GDI-AEPTP900 case study, it was reasoned that another 

modification of the GDI could be to raise the level at which Layer A was calculated. The 

reasoning behind this was that less available low-level moisture over portions of the African 

continent, especially the interior and near the Sahara, would lead to higher-based thunderstorms. 

Therefore, the new test height of Layer A was selected as 875 mb instead of 950 mb, as 

calculated in the original GDI algorithm (Formula 2.5).  

The GDI for the Elevated Layer A was calculated using the August days and times once 

again, and then 60 was chosen as the scattered thunderstorm threshold (Figure 4.17). Once the 

Elevated Layer A location and area errors were averaged and bootstrapped, it was determined 

that the location error was reduced overall, but was not significant at the 95 or 90% confidence 

level (Figures 4.18 and 4.19). 
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Figure 4.16: GDI values for the Elevated Layer A modification with lightning in cyan asterisks 

plotted over top for 26 Aug 2018 at 18Z. 

 
Figure 4.17: GDI-A values of 60 or above for the Layer A modification in red dots with lightning 

in cyan asterisks plotted over top for 26 Aug 2018 at 18Z. 
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Figure 4.18: 95% location error confidence interval of GDI vs. the GDI-A with Elevated Layer A 
modification for the August 2018 Elevated Layer A case study.  

 

 
Figure 4.19: 90% location error confidence interval of GDI vs. the GDI-A with Elevated Layer A 

modification for the August 2018 Elevated Layer A case study.  
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Although it was not determined with 90% confidence that changing the height at which 

the potential temperature was calculated for Layer A from 950 mb to 875 mb reduces the 

location error, it would be a worthwhile extension of this case study to test this concept using 

multiple height changes, such as 925 mb and 900 mb. It is possible that one of these layer 

changes could work to further reduce the location error, as hinted at by the lower location error 

values achieved in this case study.  

Another useful alteration to this case study would be to change the scattered 

thunderstorm threshold. The threshold was set as 60 for this case study, but 55 and 65 would be 

reasonable choices as well.  

 

Kelvin Wave Study 

Kelvin Wave Sign and Regional Study 

The final study that was conducted with the GALWEM data was an analysis of Kelvin 

wave presence and sign over Africa and whether or not these had any effect on the location error 

of the convective index forecasts. Observed Kelvin wave imagery was obtained from the North 

Carolina Institute for Climate Studies (NCICS) and accessed at the following link: 

https://ncics.org/pub/mjo/archive. Coordination with the product creator, Dr. Carl Schreck from 

the NCICS, confirmed the correct images were being analyzed. 

The Kelvin wave sign and regional study looked at the atmospheric conditions during 

multiple cases in the lowest 5% of GDI location error. The initial goal was to analyze the cases 

that exemplified location error within one diameter of the widely-used, base lightning watch. A 

lightning watch generally uses a range ring of 25 nautical miles (nm) and therefore, a diameter 

would be 50 nm (or about 92.6 km). Near the equator, 1 degree of longitude (or latitude) is 

https://ncics.org/pub/mjo/archive
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approximately 111 km. This would mean that the “good” location forecasts would need a 

location error on less than 1 degree. Some of the lowest location errors achieved in this study 

were around 3 degrees, so this was not a realistic goal. Therefore, the goal was reset to the lowest 

5% of cases, which all exhibited less than 4.7 degrees for GDI location error. Of the six lowest 

location error examples, two dates did not have any Kelvin waves present, so they were 

excluded. These dates are 26 April and 24 July 2018 (Figures 4.20 and 4.21). The remaining 

examples were as follows:  10 May 2018 at 06Z, 26 August 2018 at 18Z, 22 September 2018 at 

18Z, and 24 September 2018 at 06Z.  

 
Figure 4.20: Kelvin waves and OLR for late April 2018, indicating lack of Kelvin wave presence 

over Africa on 26 April.  
 

 
Figure 4.21: Kelvin waves and OLR for late July 2018 indicating lack of Kelvin wave presence 

over Africa on 24 July.  
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Table 4.1 Lowest 5% of GDI location error examples across the full study region with 
corresponding regional GDI location errors. 

Date/Time Kelvin 
Wave 
Present? 
(Y/N) 

Full study 
region GDI 
loc. Error 
(degrees) 

West Africa 
GDI loc. 
error 
(degrees) 

East Africa 
GDI loc. 
error 
(degrees) 

26 Apr 
2018/06Z 

N 4.20 7.95 3.43 

10 May 
2018 at 06Z 

Y 4.69 4.20 14.32 

24 Jul 2018 
at 06Z 

N 4.24 5.20 8.65 

26 Aug 
2018 at 18Z 

Y 4.23 5.82 2.89 

22 Sep 2018 
at 18Z 

Y 3.57 7.30 8.23 

24 Sep 2018 
at 06Z 

Y 3.03 6.97 11.00 

 
The 1-day Kelvin wave images of observed and Climate Forecast System (CFS) forecasts 

are analyzed for these examples. The 1-Day Kelvin wave images were not archived each day, so 

some of the days in the sample set reference the CFS forecasted Kelvin wave location and sign, 

as the observed are not present.  For this study, the observed and CFS-forecasted outgoing 

longwave radiation (OLR) charts are used. In Kelvin wave and OLR graphics, dashed blue lines 

are positive Kelvin waves and indicate drying/suppression of convective activity, while solid 

blue lines are negative Kelvin waves, which indicate wet/convective activity (Schreck 2018). 

The 10 May 2018 case is the first example. The 06Z GDI from this day had a calculated 

location error of 4.20 degrees. Kelvin waves are observed on 10 May off the West African coast, 

in Northwest Africa, in West Central Africa and off the East African coast (Figure 4.22) 
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Figure 4.22: Comparison of IR satellite imagery with Kelvin waves outlined in yellow and red 

(left) and Kelvin waves and OLR (right) for 10 May 2018 over Africa (Schreck 2018).  
 

The Kelvin waves off the West Coast and in Northwest Africa are both negative and 

therefore point to wet/convective activity. The Kelvin waves in West Central Africa and off the 

East coast are positive in sign and therefore indicate dry/suppressed weather for that day. Except 

for the wave off the East Africa coast, which is not covered by this IR image, the IR imagery for 

this day supports these convective regions fairly well (Figure 4.22).  

The yellow rectangle outlined in the satellite imagery, highlights the region of convective 

activity that correlates with the observed, negative Kelvin wave that stretches from off the west 

coast of Africa through Guinea and northeastward through Niger and Nigeria. This region lines 

up well overall with the expected saturated and convective activity that is typically associated 

with negative Kelvin waves.  

The yellow oval outlines a positive Kelvin wave as shown in Figure 4.20, which indicates 

drying and suppression. This region lines up well with the IR imagery that shows a dry, and 

mainly cloudless, region east of the MCS near Niger and Chad.  

Lastly, the red oval in northwest Africa correlates to the negative Kelvin wave shown in 

Figure 4.20. This negative Kelvin wave should mean convective activity in this region over 
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Senegal, Mauritania, Mali, etc., but there is little to no convection indicated on the IR satellite. 

This could be due to the relative lack of moisture in this region.  

Analysis of the regional location errors can help draw connections between the 

positioning of these waves with location error reductions. For 10 May 2018 at 06Z, the West 

African GDI location error is 4.2064 degrees, while the East African GDI location error is 14.32 

degrees. This shows a connection between the expected increase in convective activity 

associated with the negative Kelvin waves and lower location error in West Africa. Furthermore, 

positive Kelvin waves present in East Africa indicate drying and suppression associated with the 

much higher location error in East Africa. The next chronological example among the lowest 5% 

of location error examples is 26 August 2018 at 18Z. 

For 26 August 2018 at 18Z, the GDI location error of the entire study region is 4.23 

degrees. During this day, there is a small, positive Kelvin wave observed over Western Africa 

(Figure 4.23).  

 
Figure 4.23: Comparison of IR satellite imagery with Kelvin wave outlined in red (left) and 

Kelvin waves and OLR (right) over Africa for 26 August 2018. The positive Kelvin wave lines 
up with the relatively cloud-free region outlined in the red oval on the IR imagery (Schreck 

2018).  
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Referencing the regional study, the GDI location error for West Africa on this day and time is 

5.82 degrees for West Africa and 2.89 degrees for East Africa. While both of these location 

errors are fairly low, the difference between the West and the East could very well be a product 

of the positive Kelvin wave presence in West Africa. This positive Kelvin wave suggests drying 

and suppression of storms in the West and this is supported by lack of convection in this region 

(Figure 4.23). This example shows a link between positive Kelvin wave presence and decreased 

location forecast skill regionally.  

 

 
Figure 4.24: Comparison of IR satellite imagery with negative Kelvin wave outlined in yellow 

(left) and Kelvin waves and OLR (right) over Africa for 22 September 2018. The negative 
Kelvin wave lines up with convective region in West Africa outline in the yellow oval (Schreck 

2018). 
 

The next low location error example to be analyzed is the 22 September 2018 at 18Z 

timeframe. The GDI location error for this date and time was 3.57 degrees for the entire study 

region. For 22 September, a negative Kelvin wave is observed over the majority of West Africa 

(Figure 4.24). This negative Kelvin wave suggests wet and convective conditions. The IR 

satellite imagery supports the convective activity for this day along the West African coastline 

(Figure 4.24).  
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Analyzing the results of the regional study, it is noted that the West Africa GDI location 

error is 7.30 degrees, whereas the East Africa GDI location error is 8.23 degrees. Although it is 

not a significant difference, this example still shows connection between negative Kelvin waves 

and decreased location error (increased location forecast skill).  

The last example among the lowest 5% of location error is 24 September 2018 at 06Z. 

The GDI location error for this day and time was 3.03 degrees for the whole study region. There 

were two small Kelvin waves observed during this day. The first wave was a positive Kelvin 

wave over far Western Africa. The other wave is a very small, negative wave over Central Africa 

(Figure 4.25). These two waves would suggest a drying and suppression of storms in the far 

western portions of the continent along the coastline and increased convective activity in the 

direct central interior of Africa. The IR imagery tends to line up well with the implied 

suppression and bolstering of convection associated with these two narrow waves (Figure 4.25).  

 
Figure 4.25: Comparison of IR satellite imagery with Kelvin waves outlined in yellow and red 

(left) and Kelvin waves and OLR (right) over Africa for 24 September 2018. The red outline 
shows a positive Kelvin wave that lines up with an area of little-to-no convective activity while 

the yellow oval outlines a negative Kelvin wave coinciding with an MCS (Schreck 2018).  
 

Reviewing the regional study, the West Africa GDI location error is actually higher than 

the East Africa GDI location error in this case. The West and East GDI location errors are 6.97 

and 11.00 degrees, respectively. This is the first example among the lowest location error 
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examples in which the regional location error does not line up well with the presence and type of 

Kelvin wave. 

The convective regime study showed that the GDI location error exhibited the highest 

error when the predominant convection source was due to MCSs. Convective activity on this day 

was primarily MCS-based with multiple MCSs in Central/West Africa. However, this should 

suggest that the GDI location error would be higher in the west than the east due to the presence 

of MCSs and a positive Kelvin wave, but the opposite is true. Therefore, there must additional 

factors affecting the location error for this example. These Kelvin waves are fairly limited in 

terms of areal coverage. This could mean that the Kelvin waves did not play much of a role in 

altering convection overall for this day. Therefore, one should consider other factors such as 

current cloud coverage and dynamic forcing.  

Although only a small handful of examples were analyzed in this Kelvin wave study, 

there seems to be a connection between the presence/type of Kelvin wave and the regional 

location forecast accuracy: negative (positive) Kelvin wave seems to correspond to a lower 

(higher) location error. While no statistically significant conclusions can be drawn from such a 

small sample size, this would be a good extension of the current research. Furthermore, it would 

be important to look more closely at examples in which the regional GDI location error differed 

greatly between West and East Africa when Kelvin waves are present somewhere over the 

continent, especially if waves are located in both regions.  

 

OLR and Kelvin Wave Study 

In this study, another connection can be made between the OLR and Kelvin wave sign. 

As previously discussed, negative (solid blue lines) Kelvin waves suggest wet and convective 
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activity while positive (dashed blue lines) imply drying and suppression of convective activity. 

Similarly, negative OLR indicates strong cloud cover and wet/convective areas with positive 

OLR indicating plenty of outgoing radiation and a lack of convective activity. Therefore, if the 

sign of the Kelvin wave and sign of the OLR region are the same, this should enhance the signal 

(i.e. negative Kelvin wave presence over a negative OLR region should indicate significant 

convective potential). When the sign of the Kelvin wave and OLR do not match, this leads 

creates some uncertainty in the type and intensity of the convection. This left four cases to be 

examined: 1) negative Kelvin wave and negative OLR (22 Sep 2018), 2) negative Kelvin wave 

and positive OLR (10 May 2018), 3) positive Kelvin wave and negative OLR (22 Jun 2018), 4) 

positive Kelvin wave and positive OLR (22 Jun 2018).  

The aforementioned 22 September 2018 case is an example of negative Kelvin wave 

presence overlying a negative OLR region (Figure 4.24). This day was classified an MCS-day in 

the convective regime study, showing correlation between the matching sign of the Kelvin wave 

and OLR with resulting enhanced convective activity (Figure 4.24). The next case to be 

investigated was a negative Kelvin wave over a region of positive OLR.  

The 10 May 2018 case is an example of a negative Kelvin wave over a positive OLR 

region. The core of the negative Kelvin wave that is shown over the West African coast, 

coincides with an area of positive OLR (Figure 4.22). Positive OLR suggests a lack of cloud 

cover and moisture. Therefore, strong positive OLR suggests almost no cloud cover, while weak 

positive OLR suggests limited cloud coverage. The West Africa coast is under a weak-to-

moderate, positive OLR region. Combining the attributes of the wet, convective negative Kelvin 

wave with the limited cloud coverage suggested by the weak to moderate OLR region, slight 

potential still exists for convective activity. This was the case along the West Africa coast, as 
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airmass thunderstorms were the primary source of convection in this region (Figure 4.22). The 

next case to examine is that of a positive Kelvin wave in a region of negative OLR.  

The 22nd of June 2018 is an example of a positive Kelvin wave over a region of negative 

OLR. On 22 June, a broad, positive Kelvin wave was forecasted over Central Africa with 

moderate to strong, negative OLR present over the country of Niger (Figure 4.26).  

 
Figure 4.26: Comparison of IR satellite imagery with positive Kelvin wave outlined in yellow 

(left) and Kelvin waves and OLR (right) over Africa for 22 June 2018 (Schreck 2018). 
 

Negative OLR suggests cloud coverage, while positive Kelvin waves suggest drying and 

suppression. Similarly to the last case, this situation allows for the possibility of limited 

convection. Overall, convection was fairly limited over Niger with the primary source of 

convection being airmass thunderstorms. However, an MCS setup in the afternoon in northeast 

Nigeria (Figure 4.26). This once again shows that there is a correlation between the sign and 

strength of OLR and the sign and position of the Kelvin wave, as the strongest region of negative 

OLR only exhibited airmass storms. However, the presence of the MCS near northeast Nigeria 

suggests that OLR is the dominant of the two contributing factors when it comes to convective 

initiation.  

22 June 2018 also serves as a good example of the last case in which a positive Kelvin 

wave exists in a region of positive of OLR. Weak-to-moderate, positive OLR is present for this 
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day across most of Nigeria and throughout Benin, Togo, and Ghana (Figure 4.26). As positive 

OLR would suggest, cloud cover is very limited in these regions at 18Z (Figure 4.26). 

Furthermore, there is little-to-no convection present at this time, supporting the correlation 

between regions of positive OLR and Kelvin waves and a lack of convective activity. These 

results are summarized in Tables 4.2 and 4.3 below.  

Table 4.2: The four cases and corresponding dates when these conditions occurred. 
 OLR 
  Negative OLR 

(strong cloud 
cover) 

Positive OLR 
(weak cloud cover) 

Kelvin waves (KW) Negative KW 
(wet/convective) 

22 Sep 2018 10 May 2018 

Positive KW 
(dry/suppressed) 

22 Jun 2018 22 Jun 2018 

 

Table 4.3: The resulting convection type for each case and date as listed in Table 4.2.  
 OLR 
  Negative OLR 

(strong cloud 
cover) 

Positive OLR 
(weak cloud cover) 

Kelvin waves (KW) Negative KW 
(wet/convective) 

MCS Weak airmass 

Positive KW 
(dry/suppressed) 

Airmass Little to no 
convection 
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V. Conclusions and Recommendations 

 

Chapter Overview 

The purpose of this chapter is to state the conclusions of this research as well as to 

recommend additional research in order to improve convective forecasting in Africa, especially 

for storm location. The conclusions are drawn from the results and analysis detailed in Chapter 

IV.  

 

Conclusions of Research 

 The main goal of this research was to determine whether or not the Global Air and Land 

Weather Exploitation Model (GALWEM) is able to improve upon convective forecasting in 

Africa when compared to the Global Forecasting System (GFS) through the use of two 

convective indices called the Gálvez-Davison Index (GDI) and the K Index (KI). The study 

followed similar methodology procedures to Donndelinger (2018) in order to compare his 

findings using the coarser, GFS 1° horizontal resolution reanalysis data against the results of the 

17 km 00 HR GALWEM data. To do so, base parameters of the GALWEM had to be plotted 

against GFS analysis data in order to assure the GALWEM had no significant model biases. 

Next, the observed (lightning) and forecasted (index) clusters were split into an objectively 

chosen number of clusters by use of k-means clustering. Lastly, the observed and forecasted 

clusters were paired subjectively by the user based on geographic location and two types of error 

were calculated: 1) location error was calculated to measure the distance between cluster centers 

of observed and forecasted convection, and 2) area error was calculated to measure the 

difference in spatial coverage between observed and forecasted convection. Overall, the GDI and 
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KI consistently had similar location error values, much like Donndelinger (2018). Also similar to 

the previous study, GDI showed significantly lower area error than KI when using the 

GALWEM. One main difference between this study and Donndelinger (2018) is that GDI 

significantly outperformed KI in terms of areal coverage for every case study, whereas 

Donndelinger (2018) found that the indices performed similarly when the convection was mostly 

airmass thunderstorms in the intra-seasonal study. Furthermore, this study included a look into 

regional performance of the indices, as well as a brief analysis of Kelvin wave presence and its 

effect on the location forecast.  

Monthly Study Conclusions 

The months of April through September were used for this study. The following dates 

were selected for use in this study: 10th, 12th, 14th, 22nd, 24th, and 26th. Each day included a 

sample from 00Z, 06Z, 12Z, and 18Z. All of these samples were used due to the small sample 

size of each month. Prior to full statistical analysis, the GDI and KI location and area errors were 

calculated and averaged across all times by month. The results show that the highest and lowest 

location errors for GDI are found to be in the months of May and July, respectively. The highest 

area error for GDI was found to be in the month of August, whereas the lowest area error for this 

index was found in the month of May. Similar to the GDI, the highest location error for the KI 

was across the May samples. However, the lowest location error for KI was found in the month 

of August. Lastly, the highest and lowest monthly area error for KI was determined to be in the 

months of April and July, respectively.  

After bootstrapping to ensure robust confidence intervals for each month’s data set, the 

results indicate the GDI and KI mean location error are relatively close in value in the Spring and 

early Summer months (April, May, June) but begin to show some separation in the mid-to-late 
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Summer months (July and August) into the early Fall (September). These results indicate a 

departure from Donndelinger (2018), in which the two indices showed furthest separation in 

terms of location error in the month of May. In this study, the mean location errors between the 

two indices are actually the most similar out of all the months at the 95% confidence level. 

However, indices’ error bars overlap for each month at the 95% confidence level, indicating that 

it cannot be said with high confidence (95%) that one index outperforms the other.  

Both indices’ mean location error showed an overall decreasing trend between May and 

July, similar to Donndelinger (2018) study. The greatest difference between the GDI and KI 

location error is in the month of August. However, the error bars for each index still overlap at 

the 90% confidence level, indicating that it can still not be said with 90% confidence that one 

index performs better than the other in the month of August.  

Zulu Time Study Conclusions 

Location and area error were analyzed for each date according to Zulu time in order to 

provide at least a 48-hour separation between samples. This was done in an attempt to create data 

sets with independent weather patterns from one sample to the next.  

Results show that the highest and lowest location errors for GDI were determined to be 

12Z and 18Z, respectively. The highest and lowest area error for GDI was determined to be 00Z 

and 18Z, respectively. This suggests that the GDI performs best for afternoon thunderstorm 

forecasting. Typically, during the months of April through September, the study region 

experiences greater frequency of diurnal, airmass thunderstorms during the afternoons. This 

would suggest that the GDI performs best for airmass thunderstorms. This will be discussed in 

the next section.  
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For KI, the highest mean location and area errors were noted in the 06Z sample, and the 

lowest location and area errors occurred in the 18Z samples. Much like the GDI, the KI 

performed best in the afternoon hours. This suggests that the KI generally works best for 

afternoon thunderstorm forecasting. This will be discussed in the next section as well. 

Convective Regime Conclusions 

In the convective regime study, samples were divided amongst four convective regimes: 

purely airmass thunderstorms (AT), purely MCS convection (MCS), primarily airmass 

convection with MCS(s) present (AT/MCS), and primarily MCS convection with airmass storms 

present (MCS/AT). The location and area errors were calculated across all days and times and 

their results bootstrapped to 10,000 samples.  

The GDI performed best when the primary convection type was airmass thunderstorms. 

This is the opposite result of what Donndelinger (2018) found, suggesting that the higher-

resolution GALWEM, did in fact, resolve smaller features well and provides a better handle on 

airmass storms than the GFS reanalysis 1° horizontal resolution data.  

The KI did not show as consistent of a trend as the GDI. The lowest location error for the 

KI was a tie between the MCS and AT/MCS cases, although as previously stated in Section IV, 

the KI location errors were all within .092 degrees of one another. This shows that the KI 

performs with nearly the same accuracy when determining cluster location no matter the 

convective regime present. The lowest area error for KI was noted in the AT regime. Therefore, 

it can be concluded that the KI performs best overall when the primary convection type is 

airmass storms.  

In this study, GDI once again significantly outperformed KI at the 95% confidence level 

in terms of area error. In fact, most regimes show more than twice as high an area error for KI 
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compared to GDI. Therefore, GDI can confidently be used over the KI to forecast area 

thunderstorm coverage.  

Regional Study Conclusions 

For this study, the entire study region was split into west and east at the 25°E longitude 

line. New lightning data were requested and location and area error were calculated and averaged 

across all days and times. Results indicate that the location error was overall lower in West 

Africa than East Africa. The KI outperformed the GDI in West Africa and the opposite was true 

in East Africa. However, neither of these results can be concluded with 95% confidence for 

either region.  

The area error was similar between the west and east for like indices with the GDI having 

significantly lower error than the KI. Unlike the location error, these results are significant at the 

95% confidence level.  

These results contradict the findings of Gálvez and Davison (2016), which state the GDI 

generally works best for open ocean areas and the eastern fringes of continents. This could be 

due to the relatively small data set, the inclusion of Southwest Asia in the study region, the 

relatively poor forecast skill of both indices in southern Africa, or a combination of more than 

one of these elements.  

Model Comparison Study Conclusions 

In the model comparison study, the like months in this data set and Donndelinger (2018) 

were compared to determine if the higher-resolution GALWEM data could improve the forecast, 

especially in terms of the location error, when compared to the GFS reanalysis 1° horizontal 

resolution model data. While these dates are not the exact same because GALWEM data could 
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only be pulled from 10 days prior, the results indicate the GALWEM actually has higher location 

error in almost all cases.  

For the GDI, the 2018 (GALWEM) samples all exhibit higher mean location error than 

the 2016 (GFS) GDI samples in corresponding months. For KI, the 2018 (GALWEM) samples 

show higher mean location error than the 2016 (GFS) samples in two out of three months, with 

August being the only example for which the mean location error was lower in 2018 than in 

2016. The GDI area error shows more positive results, however. 

The GDI mean area error for the 2018 months was consistently lower than the 2016 

months for each matching month. This suggests that the higher resolution GALWEM data is, 

once again, able to more accurately portray the areal coverage of convection over Africa when 

compared to the low resolution GFS. The ability of the 17 km GALWEM data to reduce the area 

error continues to be one of the most significant findings of this study. For KI, the opposite 

results were found with the area error actually being higher in the 2018 months than their 

corresponding 2016 months.  

Although these results are subjective due to lack of matching days and a slightly different 

study region, it is promising that the GDI continued to show lower area error than the GFS.  

GDI-A Study Conclusions 

Based on the results of several modifications and additions Donndelinger (2018) made to 

the GDI, the most promising African GDI alterations (GDI-As) from his study were tested with 

GALWEM data to determine if the higher resolution model could reduce location error further. 

The two GDI-As tested were the GDI-ARH700 and the GDI-AEPTP900. Furthermore, this study 

analyzed an alteration to the Layer A height (Formula 2.5).  



 82 

The GDI-ARH700 proved to lower location error when compared to the original GDI. 

However, the reduced error was not significant at the 95 or 90% confidence level. The use of the 

higher resolution GALWEM data did not significantly improve upon the results of the previous 

study and it can be said with confidence that the addition of 700 mb relative humidity to the GDI 

is not enough to greatly improve the location forecast accuracy.  

Similar to the GDI-ARH700 and Donndelinger (2018), the GDI-AEPTP900 showed a 

reduction in the location error when compared to the original GDI. However, these results are 

significant at the 90% confidence level. This is the only test in this entire study that showed a 

significant decrease in location error and should be a focus of further research.  

Lastly, the GDI-A study analyzed the lowest potential temperature layer. In this study, 

the Layer A height was modified from 950 mb to 875 mb. This was done in an effort to capture 

more high-based thunderstorms, especially in arid regions near the Sahara and interior 

continental areas. Results showed that the Elevated Layer A test reduced the location error when 

compared to the original GDI, but these results were not significant at the 95 or 90% confidence 

levels. This test could be expanded by further modifying the Layer A base height to 900 mb and 

925 mb and changing the scattered thunderstorm threshold from 60 to 55 and/or 60. This would 

allow for several more tests.   

Kelvin Wave Study Conclusions 

Lastly, a brief Kelvin wave study was completed. The first portion of this study analyzed 

sign and presence of Kelvin waves to determine if these had any correlation to location error, 

using the regional study results as support. Part two of this study looked at both Kelvin wave and 

OLR sign to determine the type of convection present. For both portions of the Kelvin wave 

study, images were obtained from the North Carolina Institute for Climate Studies (NCICS) and 
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show outgoing longwave radiation (OLR) and 1-day observed or Climate System Forecast (CFS) 

Kelvin waves.  

Part one of this study analyzed the six cases within the top 5% of lowest location error. 

The following dates and times were examined: 26 April 2018 at 06Z, 10 May 2018 at 06Z, 24 

July 2018 at 06Z, 26 August 2018 at 18Z, 22 September 2018 at 18Z, and 24 September 2018 at 

06Z. IR satellite imagery was also compared against the Kelvin wave images to determine 

whether or not the sign of the Kelvin wave lined up with an active (negative wave) or suppressed 

(positive wave) convective region. Both the 26th of April and 24th of July had no observed Kelvin 

Waves present and were therefore discarded from this study. Therefore, the first sample to be 

analyzed was the 10th of May 2018 at 06Z.  

For 10 May at 06Z, the GDI location error was 4.20 degrees for the whole study region. 

Kelvin waves were observed off the West African Coast, Northwest Africa, West Central Africa, 

and off the East African coast. Except for the Kelvin wave over Northwest Africa, the sign and 

position of each wave lines up well with position and presence of, or lack thereof, convective 

activity. The negative wave over Northwest Africa should imply a wet and convective region but 

there is little to no convective activity. This could be due to the lack of moisture in the Sahara, 

among other factors. When analyzing the regional study, the West and East African GDI location 

error are 4.2064 and 14.32 degrees, respectively. Regional location errors show the correlation 

between negative waves over West Africa and lower location error. On the other hand, 

correlation can also be shown between the positive waves over Central and East Africa, 

indicating suppression of convective activity, and higher location error. The next case is the 26th 

of August 2018 18Z.  



 84 

The GDI location error for 26 August at 18Z is 4.23 degrees for the entire study region. 

During this day, a small, positive Kelvin wave was observed over the West African coastline. A 

fairly dry and cloudless region is shown on IR imagery over the same region during this day, 

which is in line with the expected drying and suppression associated with the presence of a 

positive Kelvin wave here. Analysis of the regional study location errors for GDI show values of 

5.82 and 2.89 degrees in West and East Africa, respectively. While these location errors are both 

quite low, the presence of the small, positive Kelvin wave in West Africa once again shows a 

correlation between positive waves decreasing forecast skill (i.e. higher location error). The next 

sample analyzed is the 22nd of September 2018 at 18Z.  

For 22 September at 18Z, the GDI location error is 3.57 degrees for the whole study 

region. For this day, a broad, negative Kelvin wave is present over most of the West African 

coast. This negative Kelvin wave suggests wet conditions and convective activity, which is in 

fact the case when the IR imagery is reviewed. When the regional GDI location error is analyzed, 

it is determined that the West Africa location error is 7.23 degrees, while the East Africa location 

error for GDI is 8.23 degrees. Like the last example, this case does not show as significant a 

difference between the location error of the west and east as does the 10 May case, but still 

shows a correlation between negative Kelvin wave presence and lower location error regionally. 

The last case to be analyzed is the 24th of September at 06Z. 

The GDI location error for 24 September at 06Z across the entire study region is 3.03 

degrees. Two Kelvin waves are observed during this day: a narrow, positive wave just south of 

the West African coast and small, negative wave over central Africa. Both areas line up with the 

weather pattern implied by the sign of the Kelvin wave over their particular region when the IR 

satellite imagery is analyzed.  
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A review of the regional GDI location error for this day and time reveals errors of 6.97 

and 11.00 degrees for West and East Africa, respectively. The initial conclusion is that this case 

does not fall in line with the previous examples. However, further analysis shows that the small, 

negative Kelvin wave over Central Africa straddles the west/east dividing line implemented in 

the regional study with the majority of this wave actually in the West African study region. This 

suggests that the Central African Kelvin wave should have more effect on West Africa than East 

Africa. This would mean a positive and negative Kelvin wave over West Africa and only a small 

portion of the negative wave present over East Africa. This should indicate fairly neutral 

conditions in the west and a slightly decreased location error in the west. While this seems to be 

the case in West Africa, as 6.97 degrees is a fairly moderate location error, the East Africa GDI 

location error is fairly high. Therefore, it seems that there is more to this case than the others. To 

determine a root cause for the location error difference, the convective regime for this day and 

time was reviewed. This particular example was classified by the author as an MCS/AT sample. 

The MCS/AT regime exhibited the second highest location error among the four convective 

regimes. As the majority of MCSs form over East and Central Africa, this could be one of the 

main reasons the East African GDI location error is higher than that of West Africa.  

Not only does there appear to be a correlation between the sign of Kelvin waves and the 

location error, but there also appears to be correlation between the sign of the OLR and Kelvin 

wave with the type and amount of convective activity. This was shown by analyzing four cases: 

1) negative Kelvin wave and negative OLR, 2) negative Kelvin wave and positive OLR, 3) 

positive Kelvin wave and negative OLR, 4) positive Kelvin wave and positive OLR. The 22 

September case showed a negative Kelvin wave that coincided with a region of strong, negative 

OLR. The maximum convective potential indicated by the presence of both strong, negative 
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OLR and negative Kelvin waves correlated well with satellite imagery, which showed MCSs 

over West Africa.  

For case 2, negative Kelvin waves and positive OLR, 10 May 2018 was the sample 

analyzed. On this day, weak, positive OLR and a negative Kelvin wave overlapped off the West 

Africa coast and along the far West African countries. Although OLR was positive, storm 

activity was still possible due to the negative Kelvin wave presence. During this day, satellite 

imagery showed airmass storms in this region. This indicates that, although positive OLR was 

present, storm initiation is still possible since the OLR was weak. Therefore, OLR strength is of 

importance.  

The 22nd of June was an example of both cases 3 and 4, as there was a broad, positive 

Kelvin wave over Central Africa encompassing a region of both negative and positive OLR. 

Strong, negative OLR was present over Niger and northeast Nigeria at this time. In the region of 

strongest, negative OLR, only airmass storms are present. However, in northeast Nigeria, an 

MCS formed. This case shows that although positive Kelvin waves can stifle convection 

somewhat, OLR seems to be the more significant factor for convective support. For the same 

day, positive OLR is present over majority of Nigeria, Benin, Togo, and Ghana. Satellite 

indicates little to no cloud cover or convection for this region, showing correlation between 

positive OLR and Kelvin waves and minimal convection possibility.   

While this case study is a very narrow one, results show an overall consistent correlation 

between Kelvin wave presence/sign and location error. However, as indicated by the last sample 

analyzed here, more factors such as the convective regime for the day and time in question, 

should be analyzed in order to determine which other features affect the location forecast 

accuracy.  
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Recommendations for Action 

Overall, this study concluded that the GDI did not significantly improve the location 

forecast accuracy when compared to the KI for convection over Africa. However, the GDI 

showed significant improvement over the KI in terms of areal convective coverage with 95% 

confidence. Therefore, it is recommended that forecasters use the GDI over the KI to forecast 

African convection, as it boasts a more accurate areal coverage forecast with very little 

difference in location error.  

When like months from Donndelinger (2018) and this study were compared, results show 

that the GDI location forecast accuracy did not improve using the 17 km GALWEM data. 

However, the results once again showed a decrease in the area coverage between like months 

when using the GFS and GDI. Overall, the GDI improved upon the areal coverage forecast when 

compared across months, times, convective regimes, and regions. Significant confidence should 

be placed in GDI’s areal forecast coverage.  

The GDI proved to perform best when the predominate convective pattern was airmass 

thunderstorm-based, and worst when the predominate convection was due to MCSs. The 

opposite was the case in Donndelinger (2018). This could very well be a product of the increased 

model resolution used in this study that aided resolution of smaller terrain, weather, and other 

features.  

Alterations to the GDI proved to consistently lower location error. The addition of 700 

mb relative humidity did not lower location error at the 95 or 90% confidence level. Raising the 

height at which the Layer A Potential Temperature was calculated also proved to lower location 

error, but was also not significant at the 95 or 90% confidence level. Lastly, the alteration of the 

height at which Layer C was calculated in the equivalent potential temperature proxy (EPTP) 
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study proved to lower location error as well. While the decrease in location error when compared 

to the original GDI was not significant at the 95% confidence level, it was significant at the 90% 

confidence level. This was the only study in which the location error decrease was significant at 

the 90% confidence level. For this reason, it is recommended that the EPTP 900 mb (GDI-

AEPTP900) modification be considered as a change to the GDI for African convection forecasting.  

To determine convective potential, it is recommended that forecasters examine OLR and 

Kelvin wave charts. Use of these charts can help determine the type and intensity of convection 

when matching the sign of the OLR with the Kelvin Waves. This can help forecasters 

subjectively narrow down areas of convection and aid decision-making guides.  

 

Future Research Recommendations 

First and foremost, future research would ideally include a data set that spans at least 

multiple years. While this was not a possibility due to the archive capabilities of the 16th Weather 

Squadron, this would provide a much more robust study period and allow more significant trends 

to present themselves. 

Another future research idea would be to repeat methods in this and Donndelinger (2018) 

with even higher GALWEM data resolution in order to determine if a higher resolution data set 

could aid in location forecast accuracy. This study indicated little to no improvement in terms of 

location forecast accuracy between the GALWEM and GFS, despite the much higher resolution 

17 km GALWEM data used in this study.  

The regional study showed a lower location error overall in West Africa compared to 

East Africa. One aspect that could be investigated further would be to pinpoint the regions in 

Africa where the GDI achieves the highest forecast skill to aid forecasting ability at the local 
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level. This could in turn aid lightning forecasts from base to base and ideally lower false alarm 

rates for lightning watches, giving base operations leaders more planning time.  

The EPTP900 modification to the GDI proved to lower location error and was significant 

at the 90% confidence level. This was the only test in which the location error reduction was 

significant at least at the 90% confidence level. Therefore, the EPTP900 alteration should be 

investigated further. Ideally, a larger span of dates and times should be used to provide a more 

robust data set. This could be further investigated to determine if this change to the GDI works 

best for certain seasons, regionally, or under one convective regime than another.  

The Elevated Layer A study is another recommended expansion of the current research. 

While results showed that changing the height of Layer A from 950 mb to 875 mb did not reduce 

the location error at the 95 or 90% confidence level, other levels including 925 and 900 mb 

should be tested to determine if these could be the ideal height for this layer.  

Lastly, although a very brief case study, the Kelvin wave study performed in this research 

showed a correlation between Kelvin wave presence and sign and the location error of the GDI 

regionally. Furthermore, investigation of OLR and Kelvin wave sign showed correlation between 

these two factors and the type and intensity of convection. This suggests that Kelvin waves could 

help forecasters determine whether more or less convection should be expected in Kelvin wave 

regions in the coming days and Kelvin wave charts could serve as an additional tool, alongside 

the GDI and dynamical tools, when drawing thunderstorms charts over the continent. The case 

study should be expanded to include more dates and times in order to determine if the correlation 

stands true given a bigger sample size.  
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Summary 

Overall, the GDI is applicable to forecasting convection over the African continent. The 

GDI consistently outperforms the KI in terms of areal convection coverage, with little difference 

in the location forecast. Forecasters can place confidence in the GDI when predicting convection 

over Africa. When used along with other forecasting tools such as satellite imagery, the GDI can 

help forecasters to create an accurate picture of the current weather patterns and the expected 

progression, furthering improving our understanding of the climate system. Although there is 

much more to be done, the GDI has once again proved to increase forecast accuracy and can 

therefore aid strategic, operational land and air movements. Although modifications to the index, 

such as the EPTP900, have shown promise, further research should be completed to tailor the 

GDI specifically to the African continent to provide the best forecasting tool for our weather 

personnel in order to support the customer.  

Overall, results indicate the following: 

1.) The GDI should be used instead of the KI as the GDI decreases area error for 

convection at the 95% confidence level when compared to KI with little change to the 

location forecast accuracy.  

2.) OLR and Kelvin wave imagery should be analyzed and used in conjunction with the 

GDI to aid thunderstorm forecasting over the African continent.  

a. OLR should be prioritized over Kelvin wave sign when both OLR and Kelvin 

wave sign are being considered.  
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Appendix A: Monthly Study Error Values 

Table A1: GDI and KI location and area errors for April 2018.  
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Table A2: GDI and KI location and area errors for May 2018.  
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Table A3: GDI and KI location and area errors for June 2018.   
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Table A4: GDI and KI location and area errors for July 2018.   
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Table A5: GDI and KI location and area errors for August 2018.   
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Table A6: GDI and KI location and area errors for September 2018.  
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Appendix B: Zulu Time Study Error Values 

Table B1: All 00Z GDI and KI location and area errors.  
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Table B2: All 06Z GDI and KI location and area errors.  
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Table B3: All 12Z GDI and KI location and area errors. 
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Table B4: All 18Z GDI and KI location and area errors. 
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Appendix C: Convective Regime Study Error Values 

Table C1: GDI and KI airmass thunderstorm location and area errors.   
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Table C2: GDI and KI airmass thunderstorm location and area errors. 
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Table C3: GDI and KI airmass and MCS thunderstorm location and area errors. 
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Table C4: GDI and KI MCS and airmass thunderstorm location and area errors. 
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Appendix D: Regional Study Error Values 

Table D1: West Africa regional study GDI and KI location and area errors for the period from 
late April through mid-June 2018. 
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Table D2: West Africa regional study GDI and KI location and area errors for the period from 
mid-June through mid-August 2018. 
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Table D3: West Africa regional study GDI and KI location and area errors for the period from 
mid-August through late September 2018. 
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Table D4: East Africa regional study GDI and KI location and area errors for the period from 
late August through mid-June 2018. 
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Table D5: East Africa regional study GDI and KI location and area errors for the period from 
mid-June through early August 2018. 
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Table D6: East Africa regional study GDI and KI location and area errors for the period from 
early August through late September 2018. 
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Appendix E: Model Comparison Study Error Values 

Table E1: 2016 GDI and KI location and area errors for the May and August cases.  
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Table E2: 2016 GDI and KI location and area errors for the September examples. 
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Table E3: 2018 GDI and KI location and area errors for the May examples. 
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Table E4: 2018 GDI and KI location and area errors for the August examples. 
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Table E5: 2018 GDI and KI location and area errors for the September examples. 
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Appendix F: GDI-A Study Error Values 

Tables F1 and F2: GDIA location and area errors for the August 2018 examples using the GDI 
modification of RH700 (left) and EPTP900 (right). 
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Table F3: GDIA location and area errors for the August 2018 examples using the Elevated Layer 
A GDI modification. 

 
  



 118 

Bibliography 

AFWA, 2012: Weather techniques and procedures lightning detection systems. 1-26pp. 

Colorado State, 2003: Numerical Weather Prediction. Accessed: 29 November 

2018, http://rams.atmos.colostate.edu/at540/fall03/fall03Pt7.pdf 

Davies-Jones, Robert, 2009: On formulas for equivalent potential temperature. Notes and 

Correspondence, 137, 3137-3148, DOI: 10.1175/2009MWR2774.1 

Efron, Bradley, and R. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman and 

Hall/CRC, 437 pp. 

Gálvez, Jose, and Michel Davison, 2016. “The ForeO-Davison Index for Tropical Convection.” 

NOAA, www.wpc.ncep.noaa.gov/international/gdi/GDI_Manuscript_V20161021.pdf. 

Galvin, J. F. P., 2016: An Introduction to the Meteorology and Climate of the Tropics. 

Wiley-Blackwell, 328 pp. 

16th Weather Squadron, 2016: GALWEM Version 8.5 Specifications. 16th Weather 

Squadron/WXE Offutt AFB, NE. 

George, J. J., 1960: Weather forecasting for aeronautics. New York and London Press, 

673 pp. 

Holton, J. R. and G. J. Hakim, 2013: An Introduction to Dynamic Meteorology. Academic Press, 

532 pp. 

Jirak, I. L., W. R. Cotton, and R. L. McAnelly, 2003: Satellite and radar survey of mesoscale 

convective systems development. Mon. Wea. Rev., 131, 2428-2449, 

https://journals.ametsoc.org/doi/10.1175/1520-

0493%282003%29131%3C2428%3ASARSOM%3E2.0.CO%3B2 

 

http://rams.atmos.colostate.edu/at540/fall03/fall03Pt7.pdf
http://www.wpc.ncep.noaa.gov/international/gdi/GDI_Manuscript_V20161021.pdf
https://journals.ametsoc.org/doi/10.1175/1520-0493%282003%29131%3C2428%3ASARSOM%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/10.1175/1520-0493%282003%29131%3C2428%3ASARSOM%3E2.0.CO%3B2


 119 

King, Angela, 2006: Africa Physical Map. Geology.com, Map Resources, 

https://geology.com/world/africa-physical-map.shtml 

Kirshnamurti, T. N., L. Stefanova and V. Misra, 2013: Tropical Meteorology: An Introduction. 

Springer, 423 pp. 

Krauss, 2019: Kelvin and Rossby Waves. Geo.cornell.edu, Cornell University, 

http://www.geo.cornell.edu/ocean/p_ocean/ppt_notes/21_KelvinRossbyWaves.pdf 

Marzban, C. and S. Sandgathe, 2005: Cluster analysis for verification of precipitation fields. 

Wea. Forecasting, 21, 824-830, 

http://journals.ametsoc.org/doi/abs/10.1175/WAF948.1 

Mekonnen, Ademe, et al., 2008: Convectively Coupled Kelvin Waves over Tropical Africa 

during the Boreal Summer: Structure and Variability. Journal of Climate, vol. 20, no. 24, 

pp. 1500–1501., doi:10.1175/2008jcli2008.1. 

Mounier, Flore, et al., 2007: Analysis of the Dominant Mode of Convectively Coupled Kelvin 

Waves in the West African Monsoon. Journal of Climate, vol. 20, no. 8, pp. 1487–1503, 

doi:10.1175/jcli4059.1. 

NexSat, 2011: About NexSat. Accessed 29 November 

2018, www.nrlmry.navy.mil/nexdat/headliner/About%20the%20NexSat%20web%20pag

e.pdf 

North Carolina Climate Office, 2019: General Circulation of the Atmosphere. 

https://climate.ncsu.edu/edu/AtmosCirculation 

NWS, 2018: Thunderstorm and Lightning Awareness. Accessed 29 November 

2018, https://www.weather.gov/cae/thunder.html   

https://geology.com/world/africa-physical-map.shtml
http://www.geo.cornell.edu/ocean/p_ocean/ppt_notes/21_KelvinRossbyWaves.pdf
http://journals.ametsoc.org/doi/abs/10.1175/WAF948.1
http://www.nrlmry.navy.mil/nexdat/headliner/About%20the%20NexSat%20web%20page.pdf
http://www.nrlmry.navy.mil/nexdat/headliner/About%20the%20NexSat%20web%20page.pdf
https://climate.ncsu.edu/edu/AtmosCirculation
https://www.weather.gov/cae/thunder.html


 120 

Orloff, J. and J. Bloom, 2014: Bootstrap confidence intervals. MIT 

OpenCourseWare, https://ocw.mit.edu/courses/mathematics/18-

05.../MIT18_05S14_Reading24.pdf 

Pawlowicz, R., 2018: M_Map: A mapping package for MATLAB, version 1.4j, [Computer 

software], www.eoas.ubc.ca/~rich/map.html. 

Peng, Grace, 2014: Analysis, Reanalysis, Forecast - What's the Difference? UCAR, NCAR, 

https://rda.ucar.edu/datasets/ds083.2/docs/Analysis.pdf. 

Sensirion, 2001: Dew-point calculation. Application note. 1-3pp., 

http://irtfweb.ifa.hawaii.edu/~tcs3/tcs3/Misc/Dewpoint_Calculation_Humidity_Sensor_E

.pdf 

Singh, S. and N. A. Gill, 2013: Analysis and study of k-means clustering algorithm. 

International Journal of Engineering Research & Technology, 2, 2546-2551, 

https://www.ijert.org/download/4586/analysis-and-study-of-k-means-clusteringalgorithm 

Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt, 2001: Radar, passive microwave and 

lightning characteristics of precipitating systems in the tropics. 

Mon. Wea. Rev., 130, 802-824, http://journals.ametsoc.org/doi/abs/10.1175/1520-

0493(2002)130%3C0802%3ARPMALC%3E2.0.CO%3B2. 

UCAR, 2014: NCEP FNLvGFS. Accessed 22 April 

2018, http://rda.ucar.edu/datasets/ds083.2/docs/FNLvGFS.pdf 

UCAR, 2018: NCEP FNL Operational Model Global Tropospheric Analysis, description. 

Accessed 22 April 2018, https://rda.ucar.edu/datasets/ds083.2/ 

https://ocw.mit.edu/courses/mathematics/18-05.../MIT18_05S14_Reading24.pdf
https://ocw.mit.edu/courses/mathematics/18-05.../MIT18_05S14_Reading24.pdf
file://fsv-afit-806/WxLab/2018/Hanson/www.eoas.ubc.ca/%7Erich/map.html.
https://rda.ucar.edu/datasets/ds083.2/docs/Analysis.pdf.
http://irtfweb.ifa.hawaii.edu/%7Etcs3/tcs3/Misc/Dewpoint_Calculation_Humidity_Sensor_E.pdf
http://irtfweb.ifa.hawaii.edu/%7Etcs3/tcs3/Misc/Dewpoint_Calculation_Humidity_Sensor_E.pdf
https://www.ijert.org/download/4586/analysis-and-study-of-k-means-clusteringalgorithm
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493(2002)130%3C0802%3ARPMALC%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493(2002)130%3C0802%3ARPMALC%3E2.0.CO%3B2
http://rda.ucar.edu/datasets/ds083.2/docs/FNLvGFS.pdf
https://rda.ucar.edu/datasets/ds083.2/


 121 

Weather.us, 2018: Satellite Cloud Tops Alert Image. OpenStreetMap Contributors 

GIScienceResearch Group at Heidelberg University, Accessed 29 Nov 2018, 

https://weather.us/satellite/africa/top-alert-15min/20180822-0700z.html. 

Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Academic Press, 676 pp. 

Wuebbles, D.J., 2017: Observational datasets used in climate studies. In: Climate Science 

Special Report: Fourth National Climate Assessment, Volume I  [Wuebbles, D.J., D.W. 

Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global 

Change Research Program, Washington, DC, USA, pp. 430-435, doi: 

10.7930/J0BK19HT. 

Zijlma, Anouk, 2018: A Brief Guide to Africa’s Dry and Rainy Seasons. TripSavvy, 

https://www.tripsavvy.com/africas-dry-and-rainy-seasons-1453967 

 

https://weather.us/satellite/africa/top-alert-15min/20180822-0700z.html.
https://www.tripsavvy.com/africas-dry-and-rainy-seasons-1453967


Standard Form 298 (Rev. 8/98) 

REPORT DOCUMENTATION PAGE 

Prescribed by ANSI Std. Z39.18 

Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any 
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

6. AUTHOR(S) 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 
a. REPORT b. ABSTRACT c. THIS PAGE 

17. LIMITATION OF 
ABSTRACT 

18. NUMBER 
OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON 

19b. TELEPHONE NUMBER (Include area code) 

epolen
Highlight

epolen
Highlight

epolen
Highlight

asharp
Sticky Note
Accepted set by asharp

asharp
Sticky Note
Accepted set by asharp

asharp
Sticky Note
Accepted set by asharp


	Hanson_thesis_final
	ABSTRACT
	Table of Contents
	1.  Introduction

	Hanson SF 298

	1_REPORT_DATE_DDMMYYYY: 21-03-2019
	2_REPORT_TYPE: Master's Thesis
	3_DATES_COVERED_From__To: 01 April 2018 - 21 March 2018
	4_TITLE_AND_SUBTITLE: Analysis of the Gálvez-Davison Index for Convective Forecasting Over Africa Using the GALWEM
	5a_CONTRACT_NUMBER: 
	5b_GRANT_NUMBER: 
	5c_PROGRAM_ELEMENT_NUMBER: 
	5d_PROJECT_NUMBER: 
	5e_TASK_NUMBER: 
	5f_WORK_UNIT_NUMBER: 
	6_AUTHORS: Hanson, William, A, 1Lt
	7_PERFORMING_ORGANIZATION: Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
Wright-Patterson AFB  OH  45433-7765
	8_PERFORMING_ORGANIZATION: AFIT-ENP-19-M-81
	9_SPONSORINGMONITORING_AG: Intentionally Left Blank
	10_SPONSORMONITORS_ACRONY: Intentionally Left Blank
	1_1_SPONSORMONITORS_REPOR: 
	12_DISTRIBUTIONAVAILABILI: Distribution Statement A. Approved for Public Release;Distribution Unlimited
	13_SUPPLEMENTARY_NOTES: This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
	14ABSTRACT: The Gálvez-Davison Index (GDI) was developed for the Americas and provides a more accurate convective forecasting index than the conventional indices for thunderstorm forecasting. Previous research using the GDI via the Global Forecasting System (GFS) model data over Africa showed promising results for areal coverage (Donndelinger 2018), especially during the spring through fall months. This study will look to test the GDI via the Global Air Land Weather Exploitation Model (GALWEM) to determine if the GALWEM GDI forecast is able to more accurately forecast the location and areal coverage, as well as resolve airmass thunderstorms, when compared to the GALWEM K Index (KI) and GFS GDI forecast. Results from this study show the GDI and KI have similar location error at the 95% confidence level across the monthly, Zulu time, convective regime, and regional studies. GDI consistently outperforms the KI in terms of areal convection coverage in every study analyzed at the 95% confidence level. The GDI proves to perform best when convection is primarily airmass-based, while the KI performs best when convection is primarily from Mesoscale Convective Systems (MCSs). Furthermore, Kelvin waves and outgoing longwave radiation (OLR) show promise as additional convective forecast tools for Africa. 

	15_SUBJECT_TERMS: Gálvez-Davison Index (GDI), K Index (KI), Global Air and Land Weather Exploitation Model (GALWEM), Global Forecast System (GFS), Kelvin waves^
	a_REPORT: U
	bABSTRACT: U
	c_THIS_PAGE: U
	17_limitation_of_abstract: UU
	number_of_pages: 137
	19a_NAME_OF_RESPONSIBLE_P: Maj H.R. Tseng, AFIT/ENP
	19b_TELEPHONE_NUMBER_Incl: (937) 255-3636 x7535   william.hanson@afit.edu
	Reset: 


